Loading…

Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach

In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2015-09, Vol.34 (9), p.1854-1866
Main Authors: Miri, Mohammad Saleh, Abramoff, Michael D., Kyungmoo Lee, Niemeijer, Meindert, Jui-Kai Wang, Kwon, Young H., Garvin, Mona K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933
cites cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933
container_end_page 1866
container_issue 9
container_start_page 1854
container_title IEEE transactions on medical imaging
container_volume 34
creator Miri, Mohammad Saleh
Abramoff, Michael D.
Kyungmoo Lee
Niemeijer, Meindert
Jui-Kai Wang
Kwon, Young H.
Garvin, Mona K.
description In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.
doi_str_mv 10.1109/TMI.2015.2412881
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709713318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7060704</ieee_id><sourcerecordid>1709713318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</originalsourceid><addsrcrecordid>eNpVkUGL2zAQhUVp6aZp74VC0bEXpyPJsuRLYZvdbBcSUtgs9CZkWU5UbMsr2YXe94dXIWloT4J5b0bz5kPoPYEFIVB-3m3uFxQIX9CcUCnJCzQjnMuM8vzHSzQDKmQGUNAr9CbGnwAk51C-RleUC0kKymboeTO1o-t8rVv8YPed7Uc9Ot9j3-DtMDqDb1w0WPc1Xk4DXgXf4YebbLvcnWq-9QGvpr6eIv5-8KPfBz0cIn6Mrt9jjTfaHFxvs7XVoT-W7o569lVHW-PrYQg-Gd6iV41uo313fufocXW7W37L1tu7--X1OjM5KcZMSkYNiJISA7TKCamAcw66sU1dSSNApICCCl5bxiuWgzbCljWVrOG6KRmboy-nucNUdbY2KWzQrRqC63T4rbx26n-ldwe1979Uzgso0r3m6NN5QPBPk42j6tJ1bNvq3vopKiKgFIQxIpMVTlYTfIzBNpdvCKgjPJXgqSM8dYaXWj7-u96l4S-tZPhwMjhr7UUWUKTkOfsDH1mebw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709713318</pqid></control><display><type>article</type><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><source>IEEE Xplore (Online service)</source><creator>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</creator><creatorcontrib>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</creatorcontrib><description>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2412881</identifier><identifier>PMID: 25781623</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical optical imaging ; Bruch's membrane opening ; Cost function ; Diagnostic Techniques, Ophthalmological ; Feature extraction ; Humans ; Image color analysis ; Image segmentation ; Imaging, Three-Dimensional - methods ; Machine Learning ; multimodal ; Multimodal Imaging - methods ; ophthalmology ; optic disc ; Optic Disk - blood supply ; Optical imaging ; retina ; SD-OCT ; segmentation ; Urban areas</subject><ispartof>IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1854-1866</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</citedby><cites>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7060704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25781623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miri, Mohammad Saleh</creatorcontrib><creatorcontrib>Abramoff, Michael D.</creatorcontrib><creatorcontrib>Kyungmoo Lee</creatorcontrib><creatorcontrib>Niemeijer, Meindert</creatorcontrib><creatorcontrib>Jui-Kai Wang</creatorcontrib><creatorcontrib>Kwon, Young H.</creatorcontrib><creatorcontrib>Garvin, Mona K.</creatorcontrib><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</description><subject>Algorithms</subject><subject>Biomedical optical imaging</subject><subject>Bruch's membrane opening</subject><subject>Cost function</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Machine Learning</subject><subject>multimodal</subject><subject>Multimodal Imaging - methods</subject><subject>ophthalmology</subject><subject>optic disc</subject><subject>Optic Disk - blood supply</subject><subject>Optical imaging</subject><subject>retina</subject><subject>SD-OCT</subject><subject>segmentation</subject><subject>Urban areas</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkUGL2zAQhUVp6aZp74VC0bEXpyPJsuRLYZvdbBcSUtgs9CZkWU5UbMsr2YXe94dXIWloT4J5b0bz5kPoPYEFIVB-3m3uFxQIX9CcUCnJCzQjnMuM8vzHSzQDKmQGUNAr9CbGnwAk51C-RleUC0kKymboeTO1o-t8rVv8YPed7Uc9Ot9j3-DtMDqDb1w0WPc1Xk4DXgXf4YebbLvcnWq-9QGvpr6eIv5-8KPfBz0cIn6Mrt9jjTfaHFxvs7XVoT-W7o569lVHW-PrYQg-Gd6iV41uo313fufocXW7W37L1tu7--X1OjM5KcZMSkYNiJISA7TKCamAcw66sU1dSSNApICCCl5bxiuWgzbCljWVrOG6KRmboy-nucNUdbY2KWzQrRqC63T4rbx26n-ldwe1979Uzgso0r3m6NN5QPBPk42j6tJ1bNvq3vopKiKgFIQxIpMVTlYTfIzBNpdvCKgjPJXgqSM8dYaXWj7-u96l4S-tZPhwMjhr7UUWUKTkOfsDH1mebw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Miri, Mohammad Saleh</creator><creator>Abramoff, Michael D.</creator><creator>Kyungmoo Lee</creator><creator>Niemeijer, Meindert</creator><creator>Jui-Kai Wang</creator><creator>Kwon, Young H.</creator><creator>Garvin, Mona K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><author>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biomedical optical imaging</topic><topic>Bruch's membrane opening</topic><topic>Cost function</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Machine Learning</topic><topic>multimodal</topic><topic>Multimodal Imaging - methods</topic><topic>ophthalmology</topic><topic>optic disc</topic><topic>Optic Disk - blood supply</topic><topic>Optical imaging</topic><topic>retina</topic><topic>SD-OCT</topic><topic>segmentation</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Miri, Mohammad Saleh</creatorcontrib><creatorcontrib>Abramoff, Michael D.</creatorcontrib><creatorcontrib>Kyungmoo Lee</creatorcontrib><creatorcontrib>Niemeijer, Meindert</creatorcontrib><creatorcontrib>Jui-Kai Wang</creatorcontrib><creatorcontrib>Kwon, Young H.</creatorcontrib><creatorcontrib>Garvin, Mona K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miri, Mohammad Saleh</au><au>Abramoff, Michael D.</au><au>Kyungmoo Lee</au><au>Niemeijer, Meindert</au><au>Jui-Kai Wang</au><au>Kwon, Young H.</au><au>Garvin, Mona K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1854</spage><epage>1866</epage><pages>1854-1866</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25781623</pmid><doi>10.1109/TMI.2015.2412881</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1854-1866
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1709713318
source IEEE Xplore (Online service)
subjects Algorithms
Biomedical optical imaging
Bruch's membrane opening
Cost function
Diagnostic Techniques, Ophthalmological
Feature extraction
Humans
Image color analysis
Image segmentation
Imaging, Three-Dimensional - methods
Machine Learning
multimodal
Multimodal Imaging - methods
ophthalmology
optic disc
Optic Disk - blood supply
Optical imaging
retina
SD-OCT
segmentation
Urban areas
title Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Segmentation%20of%20Optic%20Disc%20and%20Cup%20From%20SD-OCT%20and%20Color%20Fundus%20Photographs%20Using%20a%20Machine-Learning%20Graph-Based%20Approach&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Miri,%20Mohammad%20Saleh&rft.date=2015-09-01&rft.volume=34&rft.issue=9&rft.spage=1854&rft.epage=1866&rft.pages=1854-1866&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2412881&rft_dat=%3Cproquest_cross%3E1709713318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709713318&rft_id=info:pmid/25781623&rft_ieee_id=7060704&rfr_iscdi=true