Loading…
Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach
In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal...
Saved in:
Published in: | IEEE transactions on medical imaging 2015-09, Vol.34 (9), p.1854-1866 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933 |
container_end_page | 1866 |
container_issue | 9 |
container_start_page | 1854 |
container_title | IEEE transactions on medical imaging |
container_volume | 34 |
creator | Miri, Mohammad Saleh Abramoff, Michael D. Kyungmoo Lee Niemeijer, Meindert Jui-Kai Wang Kwon, Young H. Garvin, Mona K. |
description | In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup. |
doi_str_mv | 10.1109/TMI.2015.2412881 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709713318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7060704</ieee_id><sourcerecordid>1709713318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</originalsourceid><addsrcrecordid>eNpVkUGL2zAQhUVp6aZp74VC0bEXpyPJsuRLYZvdbBcSUtgs9CZkWU5UbMsr2YXe94dXIWloT4J5b0bz5kPoPYEFIVB-3m3uFxQIX9CcUCnJCzQjnMuM8vzHSzQDKmQGUNAr9CbGnwAk51C-RleUC0kKymboeTO1o-t8rVv8YPed7Uc9Ot9j3-DtMDqDb1w0WPc1Xk4DXgXf4YebbLvcnWq-9QGvpr6eIv5-8KPfBz0cIn6Mrt9jjTfaHFxvs7XVoT-W7o569lVHW-PrYQg-Gd6iV41uo313fufocXW7W37L1tu7--X1OjM5KcZMSkYNiJISA7TKCamAcw66sU1dSSNApICCCl5bxiuWgzbCljWVrOG6KRmboy-nucNUdbY2KWzQrRqC63T4rbx26n-ldwe1979Uzgso0r3m6NN5QPBPk42j6tJ1bNvq3vopKiKgFIQxIpMVTlYTfIzBNpdvCKgjPJXgqSM8dYaXWj7-u96l4S-tZPhwMjhr7UUWUKTkOfsDH1mebw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709713318</pqid></control><display><type>article</type><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><source>IEEE Xplore (Online service)</source><creator>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</creator><creatorcontrib>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</creatorcontrib><description>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2412881</identifier><identifier>PMID: 25781623</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical optical imaging ; Bruch's membrane opening ; Cost function ; Diagnostic Techniques, Ophthalmological ; Feature extraction ; Humans ; Image color analysis ; Image segmentation ; Imaging, Three-Dimensional - methods ; Machine Learning ; multimodal ; Multimodal Imaging - methods ; ophthalmology ; optic disc ; Optic Disk - blood supply ; Optical imaging ; retina ; SD-OCT ; segmentation ; Urban areas</subject><ispartof>IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1854-1866</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</citedby><cites>FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7060704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25781623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miri, Mohammad Saleh</creatorcontrib><creatorcontrib>Abramoff, Michael D.</creatorcontrib><creatorcontrib>Kyungmoo Lee</creatorcontrib><creatorcontrib>Niemeijer, Meindert</creatorcontrib><creatorcontrib>Jui-Kai Wang</creatorcontrib><creatorcontrib>Kwon, Young H.</creatorcontrib><creatorcontrib>Garvin, Mona K.</creatorcontrib><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</description><subject>Algorithms</subject><subject>Biomedical optical imaging</subject><subject>Bruch's membrane opening</subject><subject>Cost function</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Machine Learning</subject><subject>multimodal</subject><subject>Multimodal Imaging - methods</subject><subject>ophthalmology</subject><subject>optic disc</subject><subject>Optic Disk - blood supply</subject><subject>Optical imaging</subject><subject>retina</subject><subject>SD-OCT</subject><subject>segmentation</subject><subject>Urban areas</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkUGL2zAQhUVp6aZp74VC0bEXpyPJsuRLYZvdbBcSUtgs9CZkWU5UbMsr2YXe94dXIWloT4J5b0bz5kPoPYEFIVB-3m3uFxQIX9CcUCnJCzQjnMuM8vzHSzQDKmQGUNAr9CbGnwAk51C-RleUC0kKymboeTO1o-t8rVv8YPed7Uc9Ot9j3-DtMDqDb1w0WPc1Xk4DXgXf4YebbLvcnWq-9QGvpr6eIv5-8KPfBz0cIn6Mrt9jjTfaHFxvs7XVoT-W7o569lVHW-PrYQg-Gd6iV41uo313fufocXW7W37L1tu7--X1OjM5KcZMSkYNiJISA7TKCamAcw66sU1dSSNApICCCl5bxiuWgzbCljWVrOG6KRmboy-nucNUdbY2KWzQrRqC63T4rbx26n-ldwe1979Uzgso0r3m6NN5QPBPk42j6tJ1bNvq3vopKiKgFIQxIpMVTlYTfIzBNpdvCKgjPJXgqSM8dYaXWj7-u96l4S-tZPhwMjhr7UUWUKTkOfsDH1mebw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Miri, Mohammad Saleh</creator><creator>Abramoff, Michael D.</creator><creator>Kyungmoo Lee</creator><creator>Niemeijer, Meindert</creator><creator>Jui-Kai Wang</creator><creator>Kwon, Young H.</creator><creator>Garvin, Mona K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</title><author>Miri, Mohammad Saleh ; Abramoff, Michael D. ; Kyungmoo Lee ; Niemeijer, Meindert ; Jui-Kai Wang ; Kwon, Young H. ; Garvin, Mona K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biomedical optical imaging</topic><topic>Bruch's membrane opening</topic><topic>Cost function</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Machine Learning</topic><topic>multimodal</topic><topic>Multimodal Imaging - methods</topic><topic>ophthalmology</topic><topic>optic disc</topic><topic>Optic Disk - blood supply</topic><topic>Optical imaging</topic><topic>retina</topic><topic>SD-OCT</topic><topic>segmentation</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Miri, Mohammad Saleh</creatorcontrib><creatorcontrib>Abramoff, Michael D.</creatorcontrib><creatorcontrib>Kyungmoo Lee</creatorcontrib><creatorcontrib>Niemeijer, Meindert</creatorcontrib><creatorcontrib>Jui-Kai Wang</creatorcontrib><creatorcontrib>Kwon, Young H.</creatorcontrib><creatorcontrib>Garvin, Mona K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miri, Mohammad Saleh</au><au>Abramoff, Michael D.</au><au>Kyungmoo Lee</au><au>Niemeijer, Meindert</au><au>Jui-Kai Wang</au><au>Kwon, Young H.</au><au>Garvin, Mona K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1854</spage><epage>1866</epage><pages>1854-1866</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25781623</pmid><doi>10.1109/TMI.2015.2412881</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1854-1866 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709713318 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Biomedical optical imaging Bruch's membrane opening Cost function Diagnostic Techniques, Ophthalmological Feature extraction Humans Image color analysis Image segmentation Imaging, Three-Dimensional - methods Machine Learning multimodal Multimodal Imaging - methods ophthalmology optic disc Optic Disk - blood supply Optical imaging retina SD-OCT segmentation Urban areas |
title | Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Segmentation%20of%20Optic%20Disc%20and%20Cup%20From%20SD-OCT%20and%20Color%20Fundus%20Photographs%20Using%20a%20Machine-Learning%20Graph-Based%20Approach&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Miri,%20Mohammad%20Saleh&rft.date=2015-09-01&rft.volume=34&rft.issue=9&rft.spage=1854&rft.epage=1866&rft.pages=1854-1866&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2412881&rft_dat=%3Cproquest_cross%3E1709713318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-8832c07921c02b411b05550afefdb8c7070147275de35b340ac7e9d283f5af933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709713318&rft_id=info:pmid/25781623&rft_ieee_id=7060704&rfr_iscdi=true |