Loading…

Covariate-adaptive designs with missing covariates in clinical trials

Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adap...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Mathematics 2015-06, Vol.58 (6), p.1191-1202
Main Authors: Liu, ZhongQiang, Yin, JianXin, Hu, FeiFang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343
cites cdi_FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343
container_end_page 1202
container_issue 6
container_start_page 1191
container_title Science China. Mathematics
container_volume 58
creator Liu, ZhongQiang
Yin, JianXin
Hu, FeiFang
description Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.
doi_str_mv 10.1007/s11425-014-4938-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709727155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664626800</cqvip_id><sourcerecordid>1709727155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2A3jbePKCMsACezRN_ZM08aJnQll2S7NlW9jW-O2l2epRDsyEvPdm-CF0C-QBCJGPCYDTEhPgmFdMYX6BJqBEhfNFL3MvJMeSKnaNZiltSD6sIlyyCVrM-6OJ3gwOm9rsBn90Re2Sb0MqvvywLrY-JR_awv7qUuFDYTsfvDVdMeS3Lt2gqyYXNzvXKfp8XnzMX_Hy_eVt_rTEloMasC25qYU1FoRomAVjnaElq4EJsA1nzq0YrCoiKgPEEmuVtFSWTDW0Ug3jbIrux9xd7PcHlwad17Ou60xw_SFpkKSSVEJZZimMUhv7lKJr9C76rYnfGog-UdMjNZ2p6RM1fYqnoydlbWhd1Jv-EEP-0b-mu_OgdR_affb9TRKCCypUpv0Dg3B7Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709727155</pqid></control><display><type>article</type><title>Covariate-adaptive designs with missing covariates in clinical trials</title><source>Springer Nature</source><creator>Liu, ZhongQiang ; Yin, JianXin ; Hu, FeiFang</creator><creatorcontrib>Liu, ZhongQiang ; Yin, JianXin ; Hu, FeiFang</creatorcontrib><description>Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-014-4938-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Balancing ; China ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Medical research ; Patients ; Randomization ; Simulation ; 不平衡 ; 临床试验 ; 依赖性 ; 利润率 ; 协变量 ; 平衡重 ; 自适应设计 ; 适应性</subject><ispartof>Science China. Mathematics, 2015-06, Vol.58 (6), p.1191-1202</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343</citedby><cites>FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, ZhongQiang</creatorcontrib><creatorcontrib>Yin, JianXin</creatorcontrib><creatorcontrib>Hu, FeiFang</creatorcontrib><title>Covariate-adaptive designs with missing covariates in clinical trials</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.</description><subject>Applications of Mathematics</subject><subject>Balancing</subject><subject>China</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Medical research</subject><subject>Patients</subject><subject>Randomization</subject><subject>Simulation</subject><subject>不平衡</subject><subject>临床试验</subject><subject>依赖性</subject><subject>利润率</subject><subject>协变量</subject><subject>平衡重</subject><subject>自适应设计</subject><subject>适应性</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2A3jbePKCMsACezRN_ZM08aJnQll2S7NlW9jW-O2l2epRDsyEvPdm-CF0C-QBCJGPCYDTEhPgmFdMYX6BJqBEhfNFL3MvJMeSKnaNZiltSD6sIlyyCVrM-6OJ3gwOm9rsBn90Re2Sb0MqvvywLrY-JR_awv7qUuFDYTsfvDVdMeS3Lt2gqyYXNzvXKfp8XnzMX_Hy_eVt_rTEloMasC25qYU1FoRomAVjnaElq4EJsA1nzq0YrCoiKgPEEmuVtFSWTDW0Ug3jbIrux9xd7PcHlwad17Ou60xw_SFpkKSSVEJZZimMUhv7lKJr9C76rYnfGog-UdMjNZ2p6RM1fYqnoydlbWhd1Jv-EEP-0b-mu_OgdR_affb9TRKCCypUpv0Dg3B7Fg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Liu, ZhongQiang</creator><creator>Yin, JianXin</creator><creator>Hu, FeiFang</creator><general>Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150601</creationdate><title>Covariate-adaptive designs with missing covariates in clinical trials</title><author>Liu, ZhongQiang ; Yin, JianXin ; Hu, FeiFang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Balancing</topic><topic>China</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Medical research</topic><topic>Patients</topic><topic>Randomization</topic><topic>Simulation</topic><topic>不平衡</topic><topic>临床试验</topic><topic>依赖性</topic><topic>利润率</topic><topic>协变量</topic><topic>平衡重</topic><topic>自适应设计</topic><topic>适应性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, ZhongQiang</creatorcontrib><creatorcontrib>Yin, JianXin</creatorcontrib><creatorcontrib>Hu, FeiFang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, ZhongQiang</au><au>Yin, JianXin</au><au>Hu, FeiFang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate-adaptive designs with missing covariates in clinical trials</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>58</volume><issue>6</issue><spage>1191</spage><epage>1202</epage><pages>1191-1202</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-014-4938-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2015-06, Vol.58 (6), p.1191-1202
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1709727155
source Springer Nature
subjects Applications of Mathematics
Balancing
China
Mathematical analysis
Mathematics
Mathematics and Statistics
Medical research
Patients
Randomization
Simulation
不平衡
临床试验
依赖性
利润率
协变量
平衡重
自适应设计
适应性
title Covariate-adaptive designs with missing covariates in clinical trials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate-adaptive%20designs%20with%20missing%20covariates%20in%20clinical%20trials&rft.jtitle=Science%20China.%20Mathematics&rft.au=Liu,%20ZhongQiang&rft.date=2015-06-01&rft.volume=58&rft.issue=6&rft.spage=1191&rft.epage=1202&rft.pages=1191-1202&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-014-4938-4&rft_dat=%3Cproquest_cross%3E1709727155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-c54ad6cac166f3c1acea253d1361cf43eeb31b9069a10c0cc87c27538f298f343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709727155&rft_id=info:pmid/&rft_cqvip_id=664626800&rfr_iscdi=true