Loading…

A discrete method to solve fractional optimal control problems

We present a method to solve fractional optimal control problems, where the dynamic control system depends on integer order and Caputo fractional derivatives. Our approach consists in approximating the initial fractional order problem with a new one that involves integer order derivatives only. The...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2015-06, Vol.80 (4), p.1811-1816
Main Authors: Almeida, Ricardo, Torres, Delfim F. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3
cites cdi_FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3
container_end_page 1816
container_issue 4
container_start_page 1811
container_title Nonlinear dynamics
container_volume 80
creator Almeida, Ricardo
Torres, Delfim F. M.
description We present a method to solve fractional optimal control problems, where the dynamic control system depends on integer order and Caputo fractional derivatives. Our approach consists in approximating the initial fractional order problem with a new one that involves integer order derivatives only. The latter problem is then discretized, by application of finite differences, and solved numerically. We illustrate the effectiveness of the procedure with an example.
doi_str_mv 10.1007/s11071-014-1378-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709727473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259423148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RmSTbZC9CEf9BwUsPvYXd7Ky27G5qkgp-e1MqCIKXeZffzLz3GLtEuEEAfRsRQSMHVBylNhyP2ARLLbmYVatjNoFKKA4VrE7ZWYwbAJACzITdzYt2HV2gRMVA6d23RfJF9P0nFV2oXVr7se4Lv03rIavzYwq-L7bBNz0N8ZyddHUf6eJHp2z5-LC8f-aL16eX-_mCOwUmcdkYUKZpSuyUyD5nipraUS1V1TUGs1EohTSlIV1hKZXqVGPIEbm6E20rp-z6cDb__dhRTHbIpqnv65H8LlrUUGmhlZYZvfqDbvwu5AzRClFWSkhUJlN4oFzwMQbq7DbkgOHLIth9ofZQqM2F2n2heUyZOOzEzI5vFH4v_7_0DURNd5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259423148</pqid></control><display><type>article</type><title>A discrete method to solve fractional optimal control problems</title><source>Springer Link</source><creator>Almeida, Ricardo ; Torres, Delfim F. M.</creator><creatorcontrib>Almeida, Ricardo ; Torres, Delfim F. M.</creatorcontrib><description>We present a method to solve fractional optimal control problems, where the dynamic control system depends on integer order and Caputo fractional derivatives. Our approach consists in approximating the initial fractional order problem with a new one that involves integer order derivatives only. The latter problem is then discretized, by application of finite differences, and solved numerically. We illustrate the effectiveness of the procedure with an example.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1378-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Automotive Engineering ; Classical Mechanics ; Control ; Control theory ; Derivatives ; Dynamic control ; Dynamical Systems ; Engineering ; Integers ; Mathematical analysis ; Mechanical Engineering ; Nonlinear dynamics ; Optimal control ; Original Paper ; Vibration</subject><ispartof>Nonlinear dynamics, 2015-06, Vol.80 (4), p.1811-1816</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3</citedby><cites>FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almeida, Ricardo</creatorcontrib><creatorcontrib>Torres, Delfim F. M.</creatorcontrib><title>A discrete method to solve fractional optimal control problems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We present a method to solve fractional optimal control problems, where the dynamic control system depends on integer order and Caputo fractional derivatives. Our approach consists in approximating the initial fractional order problem with a new one that involves integer order derivatives only. The latter problem is then discretized, by application of finite differences, and solved numerically. We illustrate the effectiveness of the procedure with an example.</description><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Derivatives</subject><subject>Dynamic control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Optimal control</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RmSTbZC9CEf9BwUsPvYXd7Ky27G5qkgp-e1MqCIKXeZffzLz3GLtEuEEAfRsRQSMHVBylNhyP2ARLLbmYVatjNoFKKA4VrE7ZWYwbAJACzITdzYt2HV2gRMVA6d23RfJF9P0nFV2oXVr7se4Lv03rIavzYwq-L7bBNz0N8ZyddHUf6eJHp2z5-LC8f-aL16eX-_mCOwUmcdkYUKZpSuyUyD5nipraUS1V1TUGs1EohTSlIV1hKZXqVGPIEbm6E20rp-z6cDb__dhRTHbIpqnv65H8LlrUUGmhlZYZvfqDbvwu5AzRClFWSkhUJlN4oFzwMQbq7DbkgOHLIth9ofZQqM2F2n2heUyZOOzEzI5vFH4v_7_0DURNd5Y</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Almeida, Ricardo</creator><creator>Torres, Delfim F. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>A discrete method to solve fractional optimal control problems</title><author>Almeida, Ricardo ; Torres, Delfim F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Derivatives</topic><topic>Dynamic control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Optimal control</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Ricardo</creatorcontrib><creatorcontrib>Torres, Delfim F. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Ricardo</au><au>Torres, Delfim F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A discrete method to solve fractional optimal control problems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>80</volume><issue>4</issue><spage>1811</spage><epage>1816</epage><pages>1811-1816</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We present a method to solve fractional optimal control problems, where the dynamic control system depends on integer order and Caputo fractional derivatives. Our approach consists in approximating the initial fractional order problem with a new one that involves integer order derivatives only. The latter problem is then discretized, by application of finite differences, and solved numerically. We illustrate the effectiveness of the procedure with an example.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-014-1378-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-06, Vol.80 (4), p.1811-1816
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1709727473
source Springer Link
subjects Approximation
Automotive Engineering
Classical Mechanics
Control
Control theory
Derivatives
Dynamic control
Dynamical Systems
Engineering
Integers
Mathematical analysis
Mechanical Engineering
Nonlinear dynamics
Optimal control
Original Paper
Vibration
title A discrete method to solve fractional optimal control problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20discrete%20method%20to%20solve%20fractional%20optimal%20control%20problems&rft.jtitle=Nonlinear%20dynamics&rft.au=Almeida,%20Ricardo&rft.date=2015-06-01&rft.volume=80&rft.issue=4&rft.spage=1811&rft.epage=1816&rft.pages=1811-1816&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1378-1&rft_dat=%3Cproquest_cross%3E2259423148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-3b8048bb51f4207164ebacea349fb811570523858e7915344f4b8eceecaf2dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259423148&rft_id=info:pmid/&rfr_iscdi=true