Loading…
Optimal Control Framework for Estimating Autopilot Safety Margins
This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of a...
Saved in:
Published in: | Journal of guidance, control, and dynamics control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3 |
container_end_page | 1207 |
container_issue | 7 |
container_start_page | 1197 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 38 |
creator | Govindarajan, N. de Visser, C. C. van Kampen, E. Krishnakumar, K. Barlow, J. Stepanyan, V. |
description | This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness. |
doi_str_mv | 10.2514/1.G000271 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709735891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709735891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqUw8AeRWGBIeS-243isqrYgFXUAZstxnColjYvtCPXvSdVODExvuEf3Ph1C7hEmGUf2jJMlAGQCL8gIOaUpLQp2SUYgKKYcJFyTmxC2AEhzFCMyXe9js9NtMnNd9K5NFl7v7I_zX0ntfDIPxzQ23SaZ9tHtm9bF5F3XNh6SN-03TRduyVWt22DvzndMPhfzj9lLulovX2fTVWoopzGlGjgYjpJqyjPLsax0DVQXRtsCgclKclEKBiYvOGPAirIqDa1yZkSpWUnH5PHUu_fuu7chql0TjG1b3VnXB4UCpKC8kDigD3_Qret9N3ynMibZMEcz-R-FeSFQcCGO1NOJMt6F4G2t9n5Q4g8KQR2VK1Rn5fQXp6pwpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687175779</pqid></control><display><type>article</type><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><source>Alma/SFX Local Collection</source><creator>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</creator><creatorcontrib>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</creatorcontrib><description>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000271</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Aging aircraft ; Aircraft ; Aircraft accidents & safety ; Attitudes ; Automatic pilots ; Aviation ; Commands ; Commercial aircraft ; Computation ; Constraint modelling ; Dynamical systems ; Dynamics ; Elevators (control surfaces) ; Fatalities ; Flight envelopes ; Indication ; Optimal control ; Philosophy ; Pilots ; Safety critical ; Safety margins ; Situational awareness ; System dynamics</subject><ispartof>Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207</ispartof><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</citedby><cites>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Govindarajan, N.</creatorcontrib><creatorcontrib>de Visser, C. C.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Krishnakumar, K.</creatorcontrib><creatorcontrib>Barlow, J.</creatorcontrib><creatorcontrib>Stepanyan, V.</creatorcontrib><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</description><subject>Aerospace engineering</subject><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Aircraft accidents & safety</subject><subject>Attitudes</subject><subject>Automatic pilots</subject><subject>Aviation</subject><subject>Commands</subject><subject>Commercial aircraft</subject><subject>Computation</subject><subject>Constraint modelling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elevators (control surfaces)</subject><subject>Fatalities</subject><subject>Flight envelopes</subject><subject>Indication</subject><subject>Optimal control</subject><subject>Philosophy</subject><subject>Pilots</subject><subject>Safety critical</subject><subject>Safety margins</subject><subject>Situational awareness</subject><subject>System dynamics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqUw8AeRWGBIeS-243isqrYgFXUAZstxnColjYvtCPXvSdVODExvuEf3Ph1C7hEmGUf2jJMlAGQCL8gIOaUpLQp2SUYgKKYcJFyTmxC2AEhzFCMyXe9js9NtMnNd9K5NFl7v7I_zX0ntfDIPxzQ23SaZ9tHtm9bF5F3XNh6SN-03TRduyVWt22DvzndMPhfzj9lLulovX2fTVWoopzGlGjgYjpJqyjPLsax0DVQXRtsCgclKclEKBiYvOGPAirIqDa1yZkSpWUnH5PHUu_fuu7chql0TjG1b3VnXB4UCpKC8kDigD3_Qret9N3ynMibZMEcz-R-FeSFQcCGO1NOJMt6F4G2t9n5Q4g8KQR2VK1Rn5fQXp6pwpQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Govindarajan, N.</creator><creator>de Visser, C. C.</creator><creator>van Kampen, E.</creator><creator>Krishnakumar, K.</creator><creator>Barlow, J.</creator><creator>Stepanyan, V.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><author>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerospace engineering</topic><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Aircraft accidents & safety</topic><topic>Attitudes</topic><topic>Automatic pilots</topic><topic>Aviation</topic><topic>Commands</topic><topic>Commercial aircraft</topic><topic>Computation</topic><topic>Constraint modelling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elevators (control surfaces)</topic><topic>Fatalities</topic><topic>Flight envelopes</topic><topic>Indication</topic><topic>Optimal control</topic><topic>Philosophy</topic><topic>Pilots</topic><topic>Safety critical</topic><topic>Safety margins</topic><topic>Situational awareness</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govindarajan, N.</creatorcontrib><creatorcontrib>de Visser, C. C.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Krishnakumar, K.</creatorcontrib><creatorcontrib>Barlow, J.</creatorcontrib><creatorcontrib>Stepanyan, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govindarajan, N.</au><au>de Visser, C. C.</au><au>van Kampen, E.</au><au>Krishnakumar, K.</au><au>Barlow, J.</au><au>Stepanyan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Control Framework for Estimating Autopilot Safety Margins</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1197</spage><epage>1207</epage><pages>1197-1207</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000271</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709735891 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Aging aircraft Aircraft Aircraft accidents & safety Attitudes Automatic pilots Aviation Commands Commercial aircraft Computation Constraint modelling Dynamical systems Dynamics Elevators (control surfaces) Fatalities Flight envelopes Indication Optimal control Philosophy Pilots Safety critical Safety margins Situational awareness System dynamics |
title | Optimal Control Framework for Estimating Autopilot Safety Margins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Control%20Framework%20for%20Estimating%20Autopilot%20Safety%20Margins&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Govindarajan,%20N.&rft.date=2015-07-01&rft.volume=38&rft.issue=7&rft.spage=1197&rft.epage=1207&rft.pages=1197-1207&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000271&rft_dat=%3Cproquest_cross%3E1709735891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1687175779&rft_id=info:pmid/&rfr_iscdi=true |