Loading…

Optimal Control Framework for Estimating Autopilot Safety Margins

This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of guidance, control, and dynamics control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207
Main Authors: Govindarajan, N., de Visser, C. C., van Kampen, E., Krishnakumar, K., Barlow, J., Stepanyan, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3
cites cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3
container_end_page 1207
container_issue 7
container_start_page 1197
container_title Journal of guidance, control, and dynamics
container_volume 38
creator Govindarajan, N.
de Visser, C. C.
van Kampen, E.
Krishnakumar, K.
Barlow, J.
Stepanyan, V.
description This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.
doi_str_mv 10.2514/1.G000271
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709735891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709735891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqUw8AeRWGBIeS-243isqrYgFXUAZstxnColjYvtCPXvSdVODExvuEf3Ph1C7hEmGUf2jJMlAGQCL8gIOaUpLQp2SUYgKKYcJFyTmxC2AEhzFCMyXe9js9NtMnNd9K5NFl7v7I_zX0ntfDIPxzQ23SaZ9tHtm9bF5F3XNh6SN-03TRduyVWt22DvzndMPhfzj9lLulovX2fTVWoopzGlGjgYjpJqyjPLsax0DVQXRtsCgclKclEKBiYvOGPAirIqDa1yZkSpWUnH5PHUu_fuu7chql0TjG1b3VnXB4UCpKC8kDigD3_Qret9N3ynMibZMEcz-R-FeSFQcCGO1NOJMt6F4G2t9n5Q4g8KQR2VK1Rn5fQXp6pwpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687175779</pqid></control><display><type>article</type><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><source>Alma/SFX Local Collection</source><creator>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</creator><creatorcontrib>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</creatorcontrib><description>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000271</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Aging aircraft ; Aircraft ; Aircraft accidents &amp; safety ; Attitudes ; Automatic pilots ; Aviation ; Commands ; Commercial aircraft ; Computation ; Constraint modelling ; Dynamical systems ; Dynamics ; Elevators (control surfaces) ; Fatalities ; Flight envelopes ; Indication ; Optimal control ; Philosophy ; Pilots ; Safety critical ; Safety margins ; Situational awareness ; System dynamics</subject><ispartof>Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207</ispartof><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</citedby><cites>FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Govindarajan, N.</creatorcontrib><creatorcontrib>de Visser, C. C.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Krishnakumar, K.</creatorcontrib><creatorcontrib>Barlow, J.</creatorcontrib><creatorcontrib>Stepanyan, V.</creatorcontrib><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</description><subject>Aerospace engineering</subject><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Aircraft accidents &amp; safety</subject><subject>Attitudes</subject><subject>Automatic pilots</subject><subject>Aviation</subject><subject>Commands</subject><subject>Commercial aircraft</subject><subject>Computation</subject><subject>Constraint modelling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elevators (control surfaces)</subject><subject>Fatalities</subject><subject>Flight envelopes</subject><subject>Indication</subject><subject>Optimal control</subject><subject>Philosophy</subject><subject>Pilots</subject><subject>Safety critical</subject><subject>Safety margins</subject><subject>Situational awareness</subject><subject>System dynamics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqUw8AeRWGBIeS-243isqrYgFXUAZstxnColjYvtCPXvSdVODExvuEf3Ph1C7hEmGUf2jJMlAGQCL8gIOaUpLQp2SUYgKKYcJFyTmxC2AEhzFCMyXe9js9NtMnNd9K5NFl7v7I_zX0ntfDIPxzQ23SaZ9tHtm9bF5F3XNh6SN-03TRduyVWt22DvzndMPhfzj9lLulovX2fTVWoopzGlGjgYjpJqyjPLsax0DVQXRtsCgclKclEKBiYvOGPAirIqDa1yZkSpWUnH5PHUu_fuu7chql0TjG1b3VnXB4UCpKC8kDigD3_Qret9N3ynMibZMEcz-R-FeSFQcCGO1NOJMt6F4G2t9n5Q4g8KQR2VK1Rn5fQXp6pwpQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Govindarajan, N.</creator><creator>de Visser, C. C.</creator><creator>van Kampen, E.</creator><creator>Krishnakumar, K.</creator><creator>Barlow, J.</creator><creator>Stepanyan, V.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Optimal Control Framework for Estimating Autopilot Safety Margins</title><author>Govindarajan, N. ; de Visser, C. C. ; van Kampen, E. ; Krishnakumar, K. ; Barlow, J. ; Stepanyan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerospace engineering</topic><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Aircraft accidents &amp; safety</topic><topic>Attitudes</topic><topic>Automatic pilots</topic><topic>Aviation</topic><topic>Commands</topic><topic>Commercial aircraft</topic><topic>Computation</topic><topic>Constraint modelling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elevators (control surfaces)</topic><topic>Fatalities</topic><topic>Flight envelopes</topic><topic>Indication</topic><topic>Optimal control</topic><topic>Philosophy</topic><topic>Pilots</topic><topic>Safety critical</topic><topic>Safety margins</topic><topic>Situational awareness</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govindarajan, N.</creatorcontrib><creatorcontrib>de Visser, C. C.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Krishnakumar, K.</creatorcontrib><creatorcontrib>Barlow, J.</creatorcontrib><creatorcontrib>Stepanyan, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govindarajan, N.</au><au>de Visser, C. C.</au><au>van Kampen, E.</au><au>Krishnakumar, K.</au><au>Barlow, J.</au><au>Stepanyan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Control Framework for Estimating Autopilot Safety Margins</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>38</volume><issue>7</issue><spage>1197</spage><epage>1207</epage><pages>1197-1207</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>This paper presents an optimal control framework to determine a collection of open-loop command signals that mathematically guarantees operation of an aircraft within certain prescribed state constraints. The framework is specifically applied to estimate margins for the reference command inputs of aircraft autopilot systems so that safe operation within a given flight envelope can be assured under appropriate control action. Flight envelope excursions are generally considered as precursors to loss-of-control incidents; hence, these margins contain safety-critical information that can help improve the situational awareness onboard the aircraft. In off-nominal conditions, the computed safety margins provide indications of a degraded aircraft with reduced flying and handling qualities. These indications appear in the form of increasingly more strict limits on the autopilot reference command input. The entire framework is illustrated on an example problem involving a pitch dynamics model with state constraints on the pitch attitude. Simulations are conducted wherein margins are computed for the reference pitch command of the pitch hold system, while the aircraft enters an off-nominal condition with severely degraded system dynamics and reduced elevator effectiveness.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000271</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2015-07, Vol.38 (7), p.1197-1207
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_1709735891
source Alma/SFX Local Collection
subjects Aerospace engineering
Aging aircraft
Aircraft
Aircraft accidents & safety
Attitudes
Automatic pilots
Aviation
Commands
Commercial aircraft
Computation
Constraint modelling
Dynamical systems
Dynamics
Elevators (control surfaces)
Fatalities
Flight envelopes
Indication
Optimal control
Philosophy
Pilots
Safety critical
Safety margins
Situational awareness
System dynamics
title Optimal Control Framework for Estimating Autopilot Safety Margins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Control%20Framework%20for%20Estimating%20Autopilot%20Safety%20Margins&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Govindarajan,%20N.&rft.date=2015-07-01&rft.volume=38&rft.issue=7&rft.spage=1197&rft.epage=1207&rft.pages=1197-1207&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000271&rft_dat=%3Cproquest_cross%3E1709735891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3a050c5193a352e51bdaf03a8cae81049d957b740c68544048bdbc3d64c7ba4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1687175779&rft_id=info:pmid/&rfr_iscdi=true