Loading…

A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts

Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Astronomical Union 2014-05, Vol.10 (S306), p.262-265
Main Authors: Penna-Lima, Mariana, Makler, Martín, Wuensche, Carlos A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c378t-1f9d040ab75d2400d1d29a7b509ccc693b969cf61cdf318c89d26f483c70a16d3
container_end_page 265
container_issue S306
container_start_page 262
container_title Proceedings of the International Astronomical Union
container_volume 10
creator Penna-Lima, Mariana
Makler, Martín
Wuensche, Carlos A.
description Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.
doi_str_mv 10.1017/S1743921314011041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709736234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1743921314011041</cupid><sourcerecordid>1709736234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1f9d040ab75d2400d1d29a7b509ccc693b969cf61cdf318c89d26f483c70a16d3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouK7-AG8BL16qmSRtmuOy-AUrHtSLl5LmY-mSNmvSgvvvzbKLiCJ4mmHmeYeZd7LsHPAVYODXz8AZFQQoMAyAGRxkk20pF4TA4VcO9Dg7iXGFMSsrWkyytxl69P1g0FwG51EcRr1B3iLlY-edX7ZKOrSWQXZmMAGZOLSdHHyIyAbfoaV08mODlBvjtt2PXZOC8mM_xNPsyEoXzdk-TrPX25uX-X2-eLp7mM8WuaK8GnKwQmOGZcMLTRjGGjQRkjcFFkqpUtBGlELZEpS2FCpVCU1KyyqqOJZQajrNLndz18G_j2nDumujMs7J3vgx1sCx4LQklP0HBcZZxWhCL36gKz-GPh1SQ5lMLTAnVaJgR6ngYwzG1uuQDAqbGnC9fUz96zFJQ_ca2TWh1UvzbfSfqk_AWY7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692250728</pqid></control><display><type>article</type><title>A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts</title><source>Cambridge Journals Online</source><creator>Penna-Lima, Mariana ; Makler, Martín ; Wuensche, Carlos A.</creator><creatorcontrib>Penna-Lima, Mariana ; Makler, Martín ; Wuensche, Carlos A.</creatorcontrib><description>Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S1743921314011041</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Abundance ; Astronomy ; Clusters ; Contributed Papers ; Cosmology ; Counting ; Dark energy ; Estimators ; Galactic clusters ; Mathematical models ; Monte Carlo simulation ; Parameter estimation ; Stars &amp; galaxies ; Surveys</subject><ispartof>Proceedings of the International Astronomical Union, 2014-05, Vol.10 (S306), p.262-265</ispartof><rights>Copyright © International Astronomical Union 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-1f9d040ab75d2400d1d29a7b509ccc693b969cf61cdf318c89d26f483c70a16d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1743921314011041/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Penna-Lima, Mariana</creatorcontrib><creatorcontrib>Makler, Martín</creatorcontrib><creatorcontrib>Wuensche, Carlos A.</creatorcontrib><title>A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.</description><subject>Abundance</subject><subject>Astronomy</subject><subject>Clusters</subject><subject>Contributed Papers</subject><subject>Cosmology</subject><subject>Counting</subject><subject>Dark energy</subject><subject>Estimators</subject><subject>Galactic clusters</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Stars &amp; galaxies</subject><subject>Surveys</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosouK7-AG8BL16qmSRtmuOy-AUrHtSLl5LmY-mSNmvSgvvvzbKLiCJ4mmHmeYeZd7LsHPAVYODXz8AZFQQoMAyAGRxkk20pF4TA4VcO9Dg7iXGFMSsrWkyytxl69P1g0FwG51EcRr1B3iLlY-edX7ZKOrSWQXZmMAGZOLSdHHyIyAbfoaV08mODlBvjtt2PXZOC8mM_xNPsyEoXzdk-TrPX25uX-X2-eLp7mM8WuaK8GnKwQmOGZcMLTRjGGjQRkjcFFkqpUtBGlELZEpS2FCpVCU1KyyqqOJZQajrNLndz18G_j2nDumujMs7J3vgx1sCx4LQklP0HBcZZxWhCL36gKz-GPh1SQ5lMLTAnVaJgR6ngYwzG1uuQDAqbGnC9fUz96zFJQ_ca2TWh1UvzbfSfqk_AWY7O</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Penna-Lima, Mariana</creator><creator>Makler, Martín</creator><creator>Wuensche, Carlos A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20140501</creationdate><title>A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts</title><author>Penna-Lima, Mariana ; Makler, Martín ; Wuensche, Carlos A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1f9d040ab75d2400d1d29a7b509ccc693b969cf61cdf318c89d26f483c70a16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abundance</topic><topic>Astronomy</topic><topic>Clusters</topic><topic>Contributed Papers</topic><topic>Cosmology</topic><topic>Counting</topic><topic>Dark energy</topic><topic>Estimators</topic><topic>Galactic clusters</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Stars &amp; galaxies</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penna-Lima, Mariana</creatorcontrib><creatorcontrib>Makler, Martín</creatorcontrib><creatorcontrib>Wuensche, Carlos A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penna-Lima, Mariana</au><au>Makler, Martín</au><au>Wuensche, Carlos A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>10</volume><issue>S306</issue><spage>262</spage><epage>265</epage><pages>262-265</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1743921314011041</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1743-9213
ispartof Proceedings of the International Astronomical Union, 2014-05, Vol.10 (S306), p.262-265
issn 1743-9213
1743-9221
language eng
recordid cdi_proquest_miscellaneous_1709736234
source Cambridge Journals Online
subjects Abundance
Astronomy
Clusters
Contributed Papers
Cosmology
Counting
Dark energy
Estimators
Galactic clusters
Mathematical models
Monte Carlo simulation
Parameter estimation
Stars & galaxies
Surveys
title A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monte%20Carlo%20study%20of%20cosmological%20parameter%20estimators%20from%20galaxy%20cluster%20number%20counts&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Penna-Lima,%20Mariana&rft.date=2014-05-01&rft.volume=10&rft.issue=S306&rft.spage=262&rft.epage=265&rft.pages=262-265&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S1743921314011041&rft_dat=%3Cproquest_cross%3E1709736234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-1f9d040ab75d2400d1d29a7b509ccc693b969cf61cdf318c89d26f483c70a16d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692250728&rft_id=info:pmid/&rft_cupid=10_1017_S1743921314011041&rfr_iscdi=true