Loading…

Thermal conductivity of diamond under extreme pressure: A first-principles study

Using a first-principles approach based on density functional perturbation theory and an exact numerical solution to the phonon Boltzmann equation, we show that application of high compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond. We connect this enhancemen...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-09, Vol.86 (11), Article 115203
Main Authors: Broido, D. A., Lindsay, L., Ward, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3
cites cdi_FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3
container_end_page
container_issue 11
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 86
creator Broido, D. A.
Lindsay, L.
Ward, A.
description Using a first-principles approach based on density functional perturbation theory and an exact numerical solution to the phonon Boltzmann equation, we show that application of high compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond. We connect this enhancement to the overall increased frequency scale with pressure, which makes acoustic velocities higher and reduces phonon-phonon scattering rates. Of particular importance is the often-neglected fact that heat-carrying acoustic phonons are coupled through lattice anharmonicity to higher frequency optic modes. An increase in optic mode frequencies with pressure weakens this coupling and contributes to driving the diamond thermal conductivities to far larger values than in any material at ambient pressure and temperature.
doi_str_mv 10.1103/PhysRevB.86.115203
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709741223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709741223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbmJpNO4q4WX1CwSAV3IZO5QyPzMpkpzr93pLq65x4Oh8NHyDWwBQATt9v9GN_wcL9Qy8mQnIkTMgMpWcKF_DidNNMqYcDhnFzE-MkYpDrlM7Ld7THUtqKubYrB9f7g-5G2JS28rSeLDk2BgeJ3H7BG2gWMcQh4R1e09CH2SRd843xXYaSxH4rxkpyVtop49Xfn5P3xYbd-TjavTy_r1SZxgqd9kikQykGRaVmUuc6lc_mSWXBKa85LsKmSBWNOccHR5pkFi5nMlU2Zmz4r5uTm2NuF9mvA2JvaR4dVZRtsh2ggYzpLgXMxRfkx6kIbY8DSTKNrG0YDzPziM__4jFqaIz7xA2rcZoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709741223</pqid></control><display><type>article</type><title>Thermal conductivity of diamond under extreme pressure: A first-principles study</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Broido, D. A. ; Lindsay, L. ; Ward, A.</creator><creatorcontrib>Broido, D. A. ; Lindsay, L. ; Ward, A.</creatorcontrib><description>Using a first-principles approach based on density functional perturbation theory and an exact numerical solution to the phonon Boltzmann equation, we show that application of high compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond. We connect this enhancement to the overall increased frequency scale with pressure, which makes acoustic velocities higher and reduces phonon-phonon scattering rates. Of particular importance is the often-neglected fact that heat-carrying acoustic phonons are coupled through lattice anharmonicity to higher frequency optic modes. An increase in optic mode frequencies with pressure weakens this coupling and contributes to driving the diamond thermal conductivities to far larger values than in any material at ambient pressure and temperature.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.86.115203</identifier><language>eng</language><subject>Condensed matter ; Density ; Diamonds ; Heat transfer ; Joining ; Lattice vibration ; Phonons ; Thermal conductivity</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2012-09, Vol.86 (11), Article 115203</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3</citedby><cites>FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Ward, A.</creatorcontrib><title>Thermal conductivity of diamond under extreme pressure: A first-principles study</title><title>Physical review. B, Condensed matter and materials physics</title><description>Using a first-principles approach based on density functional perturbation theory and an exact numerical solution to the phonon Boltzmann equation, we show that application of high compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond. We connect this enhancement to the overall increased frequency scale with pressure, which makes acoustic velocities higher and reduces phonon-phonon scattering rates. Of particular importance is the often-neglected fact that heat-carrying acoustic phonons are coupled through lattice anharmonicity to higher frequency optic modes. An increase in optic mode frequencies with pressure weakens this coupling and contributes to driving the diamond thermal conductivities to far larger values than in any material at ambient pressure and temperature.</description><subject>Condensed matter</subject><subject>Density</subject><subject>Diamonds</subject><subject>Heat transfer</subject><subject>Joining</subject><subject>Lattice vibration</subject><subject>Phonons</subject><subject>Thermal conductivity</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbmJpNO4q4WX1CwSAV3IZO5QyPzMpkpzr93pLq65x4Oh8NHyDWwBQATt9v9GN_wcL9Qy8mQnIkTMgMpWcKF_DidNNMqYcDhnFzE-MkYpDrlM7Ld7THUtqKubYrB9f7g-5G2JS28rSeLDk2BgeJ3H7BG2gWMcQh4R1e09CH2SRd843xXYaSxH4rxkpyVtop49Xfn5P3xYbd-TjavTy_r1SZxgqd9kikQykGRaVmUuc6lc_mSWXBKa85LsKmSBWNOccHR5pkFi5nMlU2Zmz4r5uTm2NuF9mvA2JvaR4dVZRtsh2ggYzpLgXMxRfkx6kIbY8DSTKNrG0YDzPziM__4jFqaIz7xA2rcZoI</recordid><startdate>20120906</startdate><enddate>20120906</enddate><creator>Broido, D. A.</creator><creator>Lindsay, L.</creator><creator>Ward, A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120906</creationdate><title>Thermal conductivity of diamond under extreme pressure: A first-principles study</title><author>Broido, D. A. ; Lindsay, L. ; Ward, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter</topic><topic>Density</topic><topic>Diamonds</topic><topic>Heat transfer</topic><topic>Joining</topic><topic>Lattice vibration</topic><topic>Phonons</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Ward, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broido, D. A.</au><au>Lindsay, L.</au><au>Ward, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of diamond under extreme pressure: A first-principles study</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2012-09-06</date><risdate>2012</risdate><volume>86</volume><issue>11</issue><artnum>115203</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Using a first-principles approach based on density functional perturbation theory and an exact numerical solution to the phonon Boltzmann equation, we show that application of high compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond. We connect this enhancement to the overall increased frequency scale with pressure, which makes acoustic velocities higher and reduces phonon-phonon scattering rates. Of particular importance is the often-neglected fact that heat-carrying acoustic phonons are coupled through lattice anharmonicity to higher frequency optic modes. An increase in optic mode frequencies with pressure weakens this coupling and contributes to driving the diamond thermal conductivities to far larger values than in any material at ambient pressure and temperature.</abstract><doi>10.1103/PhysRevB.86.115203</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2012-09, Vol.86 (11), Article 115203
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709741223
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Condensed matter
Density
Diamonds
Heat transfer
Joining
Lattice vibration
Phonons
Thermal conductivity
title Thermal conductivity of diamond under extreme pressure: A first-principles study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20diamond%20under%20extreme%20pressure:%20A%20first-principles%20study&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Broido,%20D.%20A.&rft.date=2012-09-06&rft.volume=86&rft.issue=11&rft.artnum=115203&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.86.115203&rft_dat=%3Cproquest_cross%3E1709741223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-78138c1d795dfb9b5ccb60a1c89922f1a485d00c8232eab7a1ae75b8a40cb7aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709741223&rft_id=info:pmid/&rfr_iscdi=true