Loading…

Testing for a class of bivariate exponential distributions

Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics 2015-09, Vol.92 (9), p.1733-1754
Main Authors: Alba-Fernández, V., Jiménez-Gamero, M.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3
cites cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3
container_end_page 1754
container_issue 9
container_start_page 1733
container_title International journal of computer mathematics
container_volume 92
creator Alba-Fernández, V.
Jiménez-Gamero, M.D.
description Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.
doi_str_mv 10.1080/00207160.2013.867956
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709750718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709750718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxgisbCkPMexY7MgVJUPqRJLmS3HcZCr1C52AvTf4yiwMDC9N5x7dXUQusSwwMDhBqCACjNYFIDJgrNKUHaEZhgKkUPB6DGajUg-MqfoLMYtAHBRsRm63ZjYW_eWtT5kKtOdijHzbVbbDxWs6k1mvvbeGddb1WWNjX2w9dBb7-I5OmlVF83Fz52j14fVZvmUr18en5f361yXhPd5oymQAtLfkLoVhJfCMFUBkFaXWmFNS0wZ54JSXvMGgzAlKEKhAYNZUZM5up5698G_D2mu3NmoTdcpZ_wQJa5AVDQJ4Am9-oNu_RBcWicxExjKKulIVDlROvgYg2nlPtidCgeJQY5C5a9QOQqVk9AUu5ti1iVZO_XpQ9fIXh06H9qgnLZRkn8bvgGQMXoG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691047026</pqid></control><display><type>article</type><title>Testing for a class of bivariate exponential distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</creator><creatorcontrib>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</creatorcontrib><description>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160.2013.867956</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>bootstrap distribution estimator ; Consistency ; empirical characteristic function ; goodness of fit ; Hydrology ; Mathematical analysis ; Mathematical models ; modelling hydrological data ; Moran-Downton distribution ; Normal distribution ; Numerical analysis ; Probability distribution functions ; Queuing theory ; Samples ; Statistical analysis ; Statistical methods</subject><ispartof>International journal of computer mathematics, 2015-09, Vol.92 (9), p.1733-1754</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</citedby><cites>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alba-Fernández, V.</creatorcontrib><creatorcontrib>Jiménez-Gamero, M.D.</creatorcontrib><title>Testing for a class of bivariate exponential distributions</title><title>International journal of computer mathematics</title><description>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</description><subject>bootstrap distribution estimator</subject><subject>Consistency</subject><subject>empirical characteristic function</subject><subject>goodness of fit</subject><subject>Hydrology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modelling hydrological data</subject><subject>Moran-Downton distribution</subject><subject>Normal distribution</subject><subject>Numerical analysis</subject><subject>Probability distribution functions</subject><subject>Queuing theory</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxgisbCkPMexY7MgVJUPqRJLmS3HcZCr1C52AvTf4yiwMDC9N5x7dXUQusSwwMDhBqCACjNYFIDJgrNKUHaEZhgKkUPB6DGajUg-MqfoLMYtAHBRsRm63ZjYW_eWtT5kKtOdijHzbVbbDxWs6k1mvvbeGddb1WWNjX2w9dBb7-I5OmlVF83Fz52j14fVZvmUr18en5f361yXhPd5oymQAtLfkLoVhJfCMFUBkFaXWmFNS0wZ54JSXvMGgzAlKEKhAYNZUZM5up5698G_D2mu3NmoTdcpZ_wQJa5AVDQJ4Am9-oNu_RBcWicxExjKKulIVDlROvgYg2nlPtidCgeJQY5C5a9QOQqVk9AUu5ti1iVZO_XpQ9fIXh06H9qgnLZRkn8bvgGQMXoG</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Alba-Fernández, V.</creator><creator>Jiménez-Gamero, M.D.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150902</creationdate><title>Testing for a class of bivariate exponential distributions</title><author>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bootstrap distribution estimator</topic><topic>Consistency</topic><topic>empirical characteristic function</topic><topic>goodness of fit</topic><topic>Hydrology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modelling hydrological data</topic><topic>Moran-Downton distribution</topic><topic>Normal distribution</topic><topic>Numerical analysis</topic><topic>Probability distribution functions</topic><topic>Queuing theory</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alba-Fernández, V.</creatorcontrib><creatorcontrib>Jiménez-Gamero, M.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alba-Fernández, V.</au><au>Jiménez-Gamero, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for a class of bivariate exponential distributions</atitle><jtitle>International journal of computer mathematics</jtitle><date>2015-09-02</date><risdate>2015</risdate><volume>92</volume><issue>9</issue><spage>1733</spage><epage>1754</epage><pages>1733-1754</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207160.2013.867956</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7160
ispartof International journal of computer mathematics, 2015-09, Vol.92 (9), p.1733-1754
issn 0020-7160
1029-0265
language eng
recordid cdi_proquest_miscellaneous_1709750718
source Taylor and Francis Science and Technology Collection
subjects bootstrap distribution estimator
Consistency
empirical characteristic function
goodness of fit
Hydrology
Mathematical analysis
Mathematical models
modelling hydrological data
Moran-Downton distribution
Normal distribution
Numerical analysis
Probability distribution functions
Queuing theory
Samples
Statistical analysis
Statistical methods
title Testing for a class of bivariate exponential distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20a%20class%20of%20bivariate%20exponential%20distributions&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=Alba-Fern%C3%A1ndez,%20V.&rft.date=2015-09-02&rft.volume=92&rft.issue=9&rft.spage=1733&rft.epage=1754&rft.pages=1733-1754&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207160.2013.867956&rft_dat=%3Cproquest_cross%3E1709750718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1691047026&rft_id=info:pmid/&rfr_iscdi=true