Loading…
Testing for a class of bivariate exponential distributions
Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for...
Saved in:
Published in: | International journal of computer mathematics 2015-09, Vol.92 (9), p.1733-1754 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3 |
container_end_page | 1754 |
container_issue | 9 |
container_start_page | 1733 |
container_title | International journal of computer mathematics |
container_volume | 92 |
creator | Alba-Fernández, V. Jiménez-Gamero, M.D. |
description | Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented. |
doi_str_mv | 10.1080/00207160.2013.867956 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709750718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709750718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxgisbCkPMexY7MgVJUPqRJLmS3HcZCr1C52AvTf4yiwMDC9N5x7dXUQusSwwMDhBqCACjNYFIDJgrNKUHaEZhgKkUPB6DGajUg-MqfoLMYtAHBRsRm63ZjYW_eWtT5kKtOdijHzbVbbDxWs6k1mvvbeGddb1WWNjX2w9dBb7-I5OmlVF83Fz52j14fVZvmUr18en5f361yXhPd5oymQAtLfkLoVhJfCMFUBkFaXWmFNS0wZ54JSXvMGgzAlKEKhAYNZUZM5up5698G_D2mu3NmoTdcpZ_wQJa5AVDQJ4Am9-oNu_RBcWicxExjKKulIVDlROvgYg2nlPtidCgeJQY5C5a9QOQqVk9AUu5ti1iVZO_XpQ9fIXh06H9qgnLZRkn8bvgGQMXoG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691047026</pqid></control><display><type>article</type><title>Testing for a class of bivariate exponential distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</creator><creatorcontrib>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</creatorcontrib><description>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160.2013.867956</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>bootstrap distribution estimator ; Consistency ; empirical characteristic function ; goodness of fit ; Hydrology ; Mathematical analysis ; Mathematical models ; modelling hydrological data ; Moran-Downton distribution ; Normal distribution ; Numerical analysis ; Probability distribution functions ; Queuing theory ; Samples ; Statistical analysis ; Statistical methods</subject><ispartof>International journal of computer mathematics, 2015-09, Vol.92 (9), p.1733-1754</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</citedby><cites>FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alba-Fernández, V.</creatorcontrib><creatorcontrib>Jiménez-Gamero, M.D.</creatorcontrib><title>Testing for a class of bivariate exponential distributions</title><title>International journal of computer mathematics</title><description>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</description><subject>bootstrap distribution estimator</subject><subject>Consistency</subject><subject>empirical characteristic function</subject><subject>goodness of fit</subject><subject>Hydrology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modelling hydrological data</subject><subject>Moran-Downton distribution</subject><subject>Normal distribution</subject><subject>Numerical analysis</subject><subject>Probability distribution functions</subject><subject>Queuing theory</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxgisbCkPMexY7MgVJUPqRJLmS3HcZCr1C52AvTf4yiwMDC9N5x7dXUQusSwwMDhBqCACjNYFIDJgrNKUHaEZhgKkUPB6DGajUg-MqfoLMYtAHBRsRm63ZjYW_eWtT5kKtOdijHzbVbbDxWs6k1mvvbeGddb1WWNjX2w9dBb7-I5OmlVF83Fz52j14fVZvmUr18en5f361yXhPd5oymQAtLfkLoVhJfCMFUBkFaXWmFNS0wZ54JSXvMGgzAlKEKhAYNZUZM5up5698G_D2mu3NmoTdcpZ_wQJa5AVDQJ4Am9-oNu_RBcWicxExjKKulIVDlROvgYg2nlPtidCgeJQY5C5a9QOQqVk9AUu5ti1iVZO_XpQ9fIXh06H9qgnLZRkn8bvgGQMXoG</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Alba-Fernández, V.</creator><creator>Jiménez-Gamero, M.D.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150902</creationdate><title>Testing for a class of bivariate exponential distributions</title><author>Alba-Fernández, V. ; Jiménez-Gamero, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bootstrap distribution estimator</topic><topic>Consistency</topic><topic>empirical characteristic function</topic><topic>goodness of fit</topic><topic>Hydrology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modelling hydrological data</topic><topic>Moran-Downton distribution</topic><topic>Normal distribution</topic><topic>Numerical analysis</topic><topic>Probability distribution functions</topic><topic>Queuing theory</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alba-Fernández, V.</creatorcontrib><creatorcontrib>Jiménez-Gamero, M.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alba-Fernández, V.</au><au>Jiménez-Gamero, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for a class of bivariate exponential distributions</atitle><jtitle>International journal of computer mathematics</jtitle><date>2015-09-02</date><risdate>2015</risdate><volume>92</volume><issue>9</issue><spage>1733</spage><epage>1754</epage><pages>1733-1754</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>Bivariate and multivariate exponential distributions are widely applied in several areas such as reliability, queueing systems or hydrology. A frequently used bivariate exponential distribution is the Moran-Downton distribution. Because of this reason, this paper proposes a goodness-of-fit test for this distribution. The test statistic exploits the analytically convenient formula of its characteristic function. Large sample properties of the proposed test such as consistency against fixed and local alternatives are studied. The finite sample performance is numerically studied. Finally, an application of this distribution to hydrological data is presented.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00207160.2013.867956</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7160 |
ispartof | International journal of computer mathematics, 2015-09, Vol.92 (9), p.1733-1754 |
issn | 0020-7160 1029-0265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709750718 |
source | Taylor and Francis Science and Technology Collection |
subjects | bootstrap distribution estimator Consistency empirical characteristic function goodness of fit Hydrology Mathematical analysis Mathematical models modelling hydrological data Moran-Downton distribution Normal distribution Numerical analysis Probability distribution functions Queuing theory Samples Statistical analysis Statistical methods |
title | Testing for a class of bivariate exponential distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20a%20class%20of%20bivariate%20exponential%20distributions&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=Alba-Fern%C3%A1ndez,%20V.&rft.date=2015-09-02&rft.volume=92&rft.issue=9&rft.spage=1733&rft.epage=1754&rft.pages=1733-1754&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207160.2013.867956&rft_dat=%3Cproquest_cross%3E1709750718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-dc50320438d3bf93849e6a7003fc4ca1c54156889558b8d109e40a350d0e162b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1691047026&rft_id=info:pmid/&rfr_iscdi=true |