Loading…

The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate

Ruthenium( ii ) tetra-15-crown-5-phthalocyaninate with axially coordinated molecules of pyrazine [(15C5) 4 Pc]Ru(pyz) 2 ( 1 ) was synthesized from a carbonyl complex [(15C5) 4 Pc]Ru(CO)(MeOH) ( 2 ), and the structure of the solvate complex ( 1 )·6CHCl 3 was revealed using the single crystal X-ray di...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015-01, Vol.3 (26), p.6692-6700
Main Authors: Gorbunova, Yulia G., Grishina, Antonina D., Martynov, Alexander G., Krivenko, Tatiyana V., Isakova, Alexandra A., Savel'ev, Vladimir V., Nefedov, Sergey E., Abkhalimov, Evgeny V., Vannikov, Anatoly V., Tsivadze, Aslan Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ruthenium( ii ) tetra-15-crown-5-phthalocyaninate with axially coordinated molecules of pyrazine [(15C5) 4 Pc]Ru(pyz) 2 ( 1 ) was synthesized from a carbonyl complex [(15C5) 4 Pc]Ru(CO)(MeOH) ( 2 ), and the structure of the solvate complex ( 1 )·6CHCl 3 was revealed using the single crystal X-ray diffraction method. Analysis of the crystal packing showed that the weak intermolecular interactions, such as CH⋯π, CH⋯N, CH⋯O and CH⋯Cl, played an essential role in the formation of stable assemblies and their organization within the crystals. The interplay between the intramolecular axial coordinated pyrazine contacts and the weak intermolecular interactions of solvate molecules with crown-ether fragments provided the basis for rationalizing the observed self-assembly of molecules in solutions of tetrachloroethane and polymeric composites with polyvinylcarbazole. The self-assembly was investigated using UV-Vis spectroscopy, dynamic light scattering measurements, atomic force microscopy and transmission electron microscopy techniques. The formation of nanoparticles of complex ( 1 ) from a tetrachloroethane solution after three cycles of heating to 70 °C/cooling to 5 °C and two days storage was proved. Thin films (7 μm) of polymeric composites with polyvinylcarbazole prepared from a solution containing nanoparticles exhibited a nonlinear optical response measured by the Z-scan technique with application of femtosecond (1030 nm) and nanosecond (1064 nm) pulse lasers. The measured third-order susceptibility ( χ (3) ) of the polyvinylcarbazole composite with 4 wt% of complex ( 1 ) was equal to 1.94 × 10 −10 esu, while the same composite prepared without the previously described special treatment had zero susceptibility. This result proves the essential role of self-assembly in future development of nonlinear optical materials.
ISSN:2050-7526
2050-7534
DOI:10.1039/C5TC00965K