Loading…

Thermal protective performance of multilayer fire fighting fabric

Purpose – The purpose of this paper is to investigate thermal protection provided by the fire fighting fabric systems with different layer under high-level thermal hazards with a typical temperature range of 800-1,000°C. The purpose of these fabric systems was to provide actual protection against bu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of clothing science and technology 2014-05, Vol.26 (3), p.235-246
Main Authors: Hassan Mohammed Ali, Akram, Yu, Weidong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose – The purpose of this paper is to investigate thermal protection provided by the fire fighting fabric systems with different layer under high-level thermal hazards with a typical temperature range of 800-1,000°C. The purpose of these fabric systems was to provide actual protection against burn injuries using garments worn by industrial workers, fire fighters and military personnel, etc. Design/methodology/approach – The fabric system was consist of glass with aluminum foil as an outer layer, non-woven basalt, non-woven glass fabric containing NaCl-MgCl2 and Galactitol phase change materials (PCM) which simulate multilayer fire fighter protective clothing system. Thermal protective performance tests were applied for thermal analysis and used as an attempt to quantify the insulating characteristics of fabrics under conditions of flash over temperature. The surface of fire fighting multilayer protective fabric has been characterized using the UV-Vis-NIR (ultraviolet-visible-near infrared) spectrophotometer Findings – The clothing shows good thermal insulation and high-temperature drop during flash over environment and avoid second degree burn. The current PCM obvious advantages such as the ability to work in high temperature, high efficiency a long period of practical performance. Originality/value – Using this design of composite multilayer technology incorporating two stages of PCM may provide people with better protection against the fire exposure and increasing the duration time which was estimated to be more than five minutes to prevent burn injuries.
ISSN:0955-6222
1758-5953
DOI:10.1108/IJCST-03-2013-0032