Loading…
Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines
Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determin...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2013-06, Vol.227 (4), p.479-485 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3 |
container_end_page | 485 |
container_issue | 4 |
container_start_page | 479 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy |
container_volume | 227 |
creator | Buckland, Hannah C Masters, Ian Orme, James AC Baker, Tim |
description | Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations. |
doi_str_mv | 10.1177/0957650913477093 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709767425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0957650913477093</sage_id><sourcerecordid>3014269051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</originalsourceid><addsrcrecordid>eNqFkUtLAzEQx4MoWKt3jwEvXlbz2jyOUnxBwYuel2x2tk3ZR012hX57s1ZBCuJcZpj_b4Z5IHRJyQ2lSt0SkyuZE0O5UIoYfoRmjAiaMSPVMZpNcjbpp-gsxg1Jlis2Q-uF_fCDHXzfYd852H5Ftqtw9O3Y_Ai4bGwFGBpooRtw209ubPGwhj7scN2HlKugaXy3woOvbIPjEMAmYgyl7yCeo5PaNhEuvv0cvT3cvy6esuXL4_Pibpk5QeWQGVIJaTgQVTKtobKSlq6mQpLa5KXgxmiSNqo55Y4DNbpijkjNVWmds8zyObre992G_n2EOBStjy5NZjvox1jQdBwllWD5_6hgRitBtUro1QG66cfQpUUKyo0WhnPJEkX2lAt9jAHqYht8a8OuoKSYvlQcfimVZPuSaFfwq-lf_CcwOpGl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398493362</pqid></control><display><type>article</type><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><source>IMechE Titles Via Sage</source><creator>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</creator><creatorcontrib>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</creatorcontrib><description>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/0957650913477093</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Blades ; Cavitation ; Flow velocity ; Mathematical models ; Modelling ; Momentum theory ; Shock waves ; Simulation ; Turbines</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2013-06, Vol.227 (4), p.479-485</ispartof><rights>IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</citedby><cites>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0957650913477093$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0957650913477093$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21892,27901,27902,45035,45423</link.rule.ids></links><search><creatorcontrib>Buckland, Hannah C</creatorcontrib><creatorcontrib>Masters, Ian</creatorcontrib><creatorcontrib>Orme, James AC</creatorcontrib><creatorcontrib>Baker, Tim</creatorcontrib><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</description><subject>Blades</subject><subject>Cavitation</subject><subject>Flow velocity</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Momentum theory</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Turbines</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEQx4MoWKt3jwEvXlbz2jyOUnxBwYuel2x2tk3ZR012hX57s1ZBCuJcZpj_b4Z5IHRJyQ2lSt0SkyuZE0O5UIoYfoRmjAiaMSPVMZpNcjbpp-gsxg1Jlis2Q-uF_fCDHXzfYd852H5Ftqtw9O3Y_Ai4bGwFGBpooRtw209ubPGwhj7scN2HlKugaXy3woOvbIPjEMAmYgyl7yCeo5PaNhEuvv0cvT3cvy6esuXL4_Pibpk5QeWQGVIJaTgQVTKtobKSlq6mQpLa5KXgxmiSNqo55Y4DNbpijkjNVWmds8zyObre992G_n2EOBStjy5NZjvox1jQdBwllWD5_6hgRitBtUro1QG66cfQpUUKyo0WhnPJEkX2lAt9jAHqYht8a8OuoKSYvlQcfimVZPuSaFfwq-lf_CcwOpGl</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Buckland, Hannah C</creator><creator>Masters, Ian</creator><creator>Orme, James AC</creator><creator>Baker, Tim</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SU</scope><scope>H8D</scope></search><sort><creationdate>20130601</creationdate><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><author>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blades</topic><topic>Cavitation</topic><topic>Flow velocity</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Momentum theory</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckland, Hannah C</creatorcontrib><creatorcontrib>Masters, Ian</creatorcontrib><creatorcontrib>Orme, James AC</creatorcontrib><creatorcontrib>Baker, Tim</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Aerospace Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckland, Hannah C</au><au>Masters, Ian</au><au>Orme, James AC</au><au>Baker, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>227</volume><issue>4</issue><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0957650913477093</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-6509 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2013-06, Vol.227 (4), p.479-485 |
issn | 0957-6509 2041-2967 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709767425 |
source | SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list); IMechE Titles Via Sage |
subjects | Blades Cavitation Flow velocity Mathematical models Modelling Momentum theory Shock waves Simulation Turbines |
title | Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavitation%20inception%20and%20simulation%20in%20blade%20element%20momentum%20theory%20for%20modelling%20tidal%20stream%20turbines&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Buckland,%20Hannah%20C&rft.date=2013-06-01&rft.volume=227&rft.issue=4&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/0957650913477093&rft_dat=%3Cproquest_cross%3E3014269051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1398493362&rft_id=info:pmid/&rft_sage_id=10.1177_0957650913477093&rfr_iscdi=true |