Loading…

Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines

Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determin...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2013-06, Vol.227 (4), p.479-485
Main Authors: Buckland, Hannah C, Masters, Ian, Orme, James AC, Baker, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3
cites cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3
container_end_page 485
container_issue 4
container_start_page 479
container_title Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy
container_volume 227
creator Buckland, Hannah C
Masters, Ian
Orme, James AC
Baker, Tim
description Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.
doi_str_mv 10.1177/0957650913477093
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709767425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0957650913477093</sage_id><sourcerecordid>3014269051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</originalsourceid><addsrcrecordid>eNqFkUtLAzEQx4MoWKt3jwEvXlbz2jyOUnxBwYuel2x2tk3ZR012hX57s1ZBCuJcZpj_b4Z5IHRJyQ2lSt0SkyuZE0O5UIoYfoRmjAiaMSPVMZpNcjbpp-gsxg1Jlis2Q-uF_fCDHXzfYd852H5Ftqtw9O3Y_Ai4bGwFGBpooRtw209ubPGwhj7scN2HlKugaXy3woOvbIPjEMAmYgyl7yCeo5PaNhEuvv0cvT3cvy6esuXL4_Pibpk5QeWQGVIJaTgQVTKtobKSlq6mQpLa5KXgxmiSNqo55Y4DNbpijkjNVWmds8zyObre992G_n2EOBStjy5NZjvox1jQdBwllWD5_6hgRitBtUro1QG66cfQpUUKyo0WhnPJEkX2lAt9jAHqYht8a8OuoKSYvlQcfimVZPuSaFfwq-lf_CcwOpGl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398493362</pqid></control><display><type>article</type><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><source>IMechE Titles Via Sage</source><creator>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</creator><creatorcontrib>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</creatorcontrib><description>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/0957650913477093</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Blades ; Cavitation ; Flow velocity ; Mathematical models ; Modelling ; Momentum theory ; Shock waves ; Simulation ; Turbines</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2013-06, Vol.227 (4), p.479-485</ispartof><rights>IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</citedby><cites>FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0957650913477093$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0957650913477093$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21892,27901,27902,45035,45423</link.rule.ids></links><search><creatorcontrib>Buckland, Hannah C</creatorcontrib><creatorcontrib>Masters, Ian</creatorcontrib><creatorcontrib>Orme, James AC</creatorcontrib><creatorcontrib>Baker, Tim</creatorcontrib><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</description><subject>Blades</subject><subject>Cavitation</subject><subject>Flow velocity</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Momentum theory</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Turbines</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEQx4MoWKt3jwEvXlbz2jyOUnxBwYuel2x2tk3ZR012hX57s1ZBCuJcZpj_b4Z5IHRJyQ2lSt0SkyuZE0O5UIoYfoRmjAiaMSPVMZpNcjbpp-gsxg1Jlis2Q-uF_fCDHXzfYd852H5Ftqtw9O3Y_Ai4bGwFGBpooRtw209ubPGwhj7scN2HlKugaXy3woOvbIPjEMAmYgyl7yCeo5PaNhEuvv0cvT3cvy6esuXL4_Pibpk5QeWQGVIJaTgQVTKtobKSlq6mQpLa5KXgxmiSNqo55Y4DNbpijkjNVWmds8zyObre992G_n2EOBStjy5NZjvox1jQdBwllWD5_6hgRitBtUro1QG66cfQpUUKyo0WhnPJEkX2lAt9jAHqYht8a8OuoKSYvlQcfimVZPuSaFfwq-lf_CcwOpGl</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Buckland, Hannah C</creator><creator>Masters, Ian</creator><creator>Orme, James AC</creator><creator>Baker, Tim</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SU</scope><scope>H8D</scope></search><sort><creationdate>20130601</creationdate><title>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</title><author>Buckland, Hannah C ; Masters, Ian ; Orme, James AC ; Baker, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blades</topic><topic>Cavitation</topic><topic>Flow velocity</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Momentum theory</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckland, Hannah C</creatorcontrib><creatorcontrib>Masters, Ian</creatorcontrib><creatorcontrib>Orme, James AC</creatorcontrib><creatorcontrib>Baker, Tim</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Aerospace Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckland, Hannah C</au><au>Masters, Ian</au><au>Orme, James AC</au><au>Baker, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>227</volume><issue>4</issue><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0957650913477093</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-6509
ispartof Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2013-06, Vol.227 (4), p.479-485
issn 0957-6509
2041-2967
language eng
recordid cdi_proquest_miscellaneous_1709767425
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list); IMechE Titles Via Sage
subjects Blades
Cavitation
Flow velocity
Mathematical models
Modelling
Momentum theory
Shock waves
Simulation
Turbines
title Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavitation%20inception%20and%20simulation%20in%20blade%20element%20momentum%20theory%20for%20modelling%20tidal%20stream%20turbines&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Buckland,%20Hannah%20C&rft.date=2013-06-01&rft.volume=227&rft.issue=4&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/0957650913477093&rft_dat=%3Cproquest_cross%3E3014269051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-90d4693e07b288eda61bcf1460f95b439980967f313c3e198d2c06837bacca2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1398493362&rft_id=info:pmid/&rft_sage_id=10.1177_0957650913477093&rfr_iscdi=true