Loading…

High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production

► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augm...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2013-03, Vol.131, p.60-67
Main Authors: Li, Tingting, Zheng, Yubin, Yu, Liang, Chen, Shulin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183
cites cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183
container_end_page 67
container_issue
container_start_page 60
container_title Bioresource technology
container_volume 131
creator Li, Tingting
Zheng, Yubin
Yu, Liang
Chen, Shulin
description ► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.
doi_str_mv 10.1016/j.biortech.2012.11.121
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709772953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852412018251</els_id><sourcerecordid>1709772953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhL1S-IHFJ6rGdOLmBVoUiVeICZ8txxo2XbFxsp1L_fb3abTnuaUaab2ae3iPkClgNDNrrXT34EDPaqeYMeA1QA4c3ZAOdEhXvVfuWbFjfsqpruLwgH1LaMcYEKP6eXHAhJAMmNmS69fcTfYhhXG32jz4_UbvOpTPZh4UGRw2d0OQqYvIpmyXTvbcxmPne0O00h4jzbGgKMfz1izeLoS5EWsS5FefXw2H5SN45Myf8dKqX5M_3m9_b2-ru14-f2293lW0EyxXvGAxyYHxUyCXjTYtSikaBZWXEO9eDHC3YsXVo3GDBtQ1H2YGUrRigE5fky_Fuef1vxZT13id7ELlgWJMGxXqleN-I82jDmFLQFtvOogKkAsFFX9D2iBaXUoro9EP0exOfNDB9yE7v9Et2-pCdBtAlu7J4dfqxDnscX9dewirA5xNgkjWzi2axPv3nFHDZdgfu65HD4vOjx6iT9bhYHH1Em_UY_DktzzJFuto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314713239</pqid></control><display><type>article</type><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</creator><creatorcontrib>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</creatorcontrib><description>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2012.11.121</identifier><identifier>PMID: 23340103</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algae ; Batch Cell Culture Techniques - methods ; Biofuel production ; Biofuels - microbiology ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Carbon ; Cell Proliferation ; Chlorella ; Chlorella - classification ; Chlorella - physiology ; Chlorella sorokiniana ; Cultivation ; Dry cells ; Energy ; Fuels ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; Heat-resistant ; Heterotrophic ; Hot Temperature ; Industrial applications and implications. Economical aspects ; Lipid ; Lipids ; Lipids - biosynthesis ; Lipids - isolation &amp; purification ; Productivity ; Species Specificity</subject><ispartof>Bioresource technology, 2013-03, Vol.131, p.60-67</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</citedby><cites>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27124683$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23340103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zheng, Yubin</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Chen, Shulin</creatorcontrib><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</description><subject>Algae</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Biofuel production</subject><subject>Biofuels - microbiology</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Cell Proliferation</subject><subject>Chlorella</subject><subject>Chlorella - classification</subject><subject>Chlorella - physiology</subject><subject>Chlorella sorokiniana</subject><subject>Cultivation</subject><subject>Dry cells</subject><subject>Energy</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heat-resistant</subject><subject>Heterotrophic</subject><subject>Hot Temperature</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lipid</subject><subject>Lipids</subject><subject>Lipids - biosynthesis</subject><subject>Lipids - isolation &amp; purification</subject><subject>Productivity</subject><subject>Species Specificity</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EokvhL1S-IHFJ6rGdOLmBVoUiVeICZ8txxo2XbFxsp1L_fb3abTnuaUaab2ae3iPkClgNDNrrXT34EDPaqeYMeA1QA4c3ZAOdEhXvVfuWbFjfsqpruLwgH1LaMcYEKP6eXHAhJAMmNmS69fcTfYhhXG32jz4_UbvOpTPZh4UGRw2d0OQqYvIpmyXTvbcxmPne0O00h4jzbGgKMfz1izeLoS5EWsS5FefXw2H5SN45Myf8dKqX5M_3m9_b2-ru14-f2293lW0EyxXvGAxyYHxUyCXjTYtSikaBZWXEO9eDHC3YsXVo3GDBtQ1H2YGUrRigE5fky_Fuef1vxZT13id7ELlgWJMGxXqleN-I82jDmFLQFtvOogKkAsFFX9D2iBaXUoro9EP0exOfNDB9yE7v9Et2-pCdBtAlu7J4dfqxDnscX9dewirA5xNgkjWzi2axPv3nFHDZdgfu65HD4vOjx6iT9bhYHH1Em_UY_DktzzJFuto</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Li, Tingting</creator><creator>Zheng, Yubin</creator><creator>Yu, Liang</creator><creator>Chen, Shulin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>C1K</scope><scope>KR7</scope></search><sort><creationdate>20130301</creationdate><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><author>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Biofuel production</topic><topic>Biofuels - microbiology</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Cell Proliferation</topic><topic>Chlorella</topic><topic>Chlorella - classification</topic><topic>Chlorella - physiology</topic><topic>Chlorella sorokiniana</topic><topic>Cultivation</topic><topic>Dry cells</topic><topic>Energy</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heat-resistant</topic><topic>Heterotrophic</topic><topic>Hot Temperature</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lipid</topic><topic>Lipids</topic><topic>Lipids - biosynthesis</topic><topic>Lipids - isolation &amp; purification</topic><topic>Productivity</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zheng, Yubin</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Chen, Shulin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tingting</au><au>Zheng, Yubin</au><au>Yu, Liang</au><au>Chen, Shulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>131</volume><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23340103</pmid><doi>10.1016/j.biortech.2012.11.121</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2013-03, Vol.131, p.60-67
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1709772953
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algae
Batch Cell Culture Techniques - methods
Biofuel production
Biofuels - microbiology
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Carbon
Cell Proliferation
Chlorella
Chlorella - classification
Chlorella - physiology
Chlorella sorokiniana
Cultivation
Dry cells
Energy
Fuels
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - metabolism
Heat-resistant
Heterotrophic
Hot Temperature
Industrial applications and implications. Economical aspects
Lipid
Lipids
Lipids - biosynthesis
Lipids - isolation & purification
Productivity
Species Specificity
title High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20productivity%20cultivation%20of%20a%20heat-resistant%20microalga%20Chlorella%20sorokiniana%20for%20biofuel%20production&rft.jtitle=Bioresource%20technology&rft.au=Li,%20Tingting&rft.date=2013-03-01&rft.volume=131&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2012.11.121&rft_dat=%3Cproquest_cross%3E1709772953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1314713239&rft_id=info:pmid/23340103&rfr_iscdi=true