Loading…
High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production
► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production. To augm...
Saved in:
Published in: | Bioresource technology 2013-03, Vol.131, p.60-67 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183 |
container_end_page | 67 |
container_issue | |
container_start_page | 60 |
container_title | Bioresource technology |
container_volume | 131 |
creator | Li, Tingting Zheng, Yubin Yu, Liang Chen, Shulin |
description | ► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production.
To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production. |
doi_str_mv | 10.1016/j.biortech.2012.11.121 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709772953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852412018251</els_id><sourcerecordid>1709772953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhL1S-IHFJ6rGdOLmBVoUiVeICZ8txxo2XbFxsp1L_fb3abTnuaUaab2ae3iPkClgNDNrrXT34EDPaqeYMeA1QA4c3ZAOdEhXvVfuWbFjfsqpruLwgH1LaMcYEKP6eXHAhJAMmNmS69fcTfYhhXG32jz4_UbvOpTPZh4UGRw2d0OQqYvIpmyXTvbcxmPne0O00h4jzbGgKMfz1izeLoS5EWsS5FefXw2H5SN45Myf8dKqX5M_3m9_b2-ru14-f2293lW0EyxXvGAxyYHxUyCXjTYtSikaBZWXEO9eDHC3YsXVo3GDBtQ1H2YGUrRigE5fky_Fuef1vxZT13id7ELlgWJMGxXqleN-I82jDmFLQFtvOogKkAsFFX9D2iBaXUoro9EP0exOfNDB9yE7v9Et2-pCdBtAlu7J4dfqxDnscX9dewirA5xNgkjWzi2axPv3nFHDZdgfu65HD4vOjx6iT9bhYHH1Em_UY_DktzzJFuto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314713239</pqid></control><display><type>article</type><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</creator><creatorcontrib>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</creatorcontrib><description>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production.
To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2012.11.121</identifier><identifier>PMID: 23340103</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algae ; Batch Cell Culture Techniques - methods ; Biofuel production ; Biofuels - microbiology ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Carbon ; Cell Proliferation ; Chlorella ; Chlorella - classification ; Chlorella - physiology ; Chlorella sorokiniana ; Cultivation ; Dry cells ; Energy ; Fuels ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; Heat-resistant ; Heterotrophic ; Hot Temperature ; Industrial applications and implications. Economical aspects ; Lipid ; Lipids ; Lipids - biosynthesis ; Lipids - isolation & purification ; Productivity ; Species Specificity</subject><ispartof>Bioresource technology, 2013-03, Vol.131, p.60-67</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</citedby><cites>FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27124683$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23340103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zheng, Yubin</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Chen, Shulin</creatorcontrib><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production.
To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</description><subject>Algae</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Biofuel production</subject><subject>Biofuels - microbiology</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Cell Proliferation</subject><subject>Chlorella</subject><subject>Chlorella - classification</subject><subject>Chlorella - physiology</subject><subject>Chlorella sorokiniana</subject><subject>Cultivation</subject><subject>Dry cells</subject><subject>Energy</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heat-resistant</subject><subject>Heterotrophic</subject><subject>Hot Temperature</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lipid</subject><subject>Lipids</subject><subject>Lipids - biosynthesis</subject><subject>Lipids - isolation & purification</subject><subject>Productivity</subject><subject>Species Specificity</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EokvhL1S-IHFJ6rGdOLmBVoUiVeICZ8txxo2XbFxsp1L_fb3abTnuaUaab2ae3iPkClgNDNrrXT34EDPaqeYMeA1QA4c3ZAOdEhXvVfuWbFjfsqpruLwgH1LaMcYEKP6eXHAhJAMmNmS69fcTfYhhXG32jz4_UbvOpTPZh4UGRw2d0OQqYvIpmyXTvbcxmPne0O00h4jzbGgKMfz1izeLoS5EWsS5FefXw2H5SN45Myf8dKqX5M_3m9_b2-ru14-f2293lW0EyxXvGAxyYHxUyCXjTYtSikaBZWXEO9eDHC3YsXVo3GDBtQ1H2YGUrRigE5fky_Fuef1vxZT13id7ELlgWJMGxXqleN-I82jDmFLQFtvOogKkAsFFX9D2iBaXUoro9EP0exOfNDB9yE7v9Et2-pCdBtAlu7J4dfqxDnscX9dewirA5xNgkjWzi2axPv3nFHDZdgfu65HD4vOjx6iT9bhYHH1Em_UY_DktzzJFuto</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Li, Tingting</creator><creator>Zheng, Yubin</creator><creator>Yu, Liang</creator><creator>Chen, Shulin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>C1K</scope><scope>KR7</scope></search><sort><creationdate>20130301</creationdate><title>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</title><author>Li, Tingting ; Zheng, Yubin ; Yu, Liang ; Chen, Shulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Biofuel production</topic><topic>Biofuels - microbiology</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Cell Proliferation</topic><topic>Chlorella</topic><topic>Chlorella - classification</topic><topic>Chlorella - physiology</topic><topic>Chlorella sorokiniana</topic><topic>Cultivation</topic><topic>Dry cells</topic><topic>Energy</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heat-resistant</topic><topic>Heterotrophic</topic><topic>Hot Temperature</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lipid</topic><topic>Lipids</topic><topic>Lipids - biosynthesis</topic><topic>Lipids - isolation & purification</topic><topic>Productivity</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zheng, Yubin</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Chen, Shulin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tingting</au><au>Zheng, Yubin</au><au>Yu, Liang</au><au>Chen, Shulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>131</volume><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Temperature played a significant role in biomass production and lipid accumulation. ► C. sorokiniana showed the highest growth rate at 37°C. ► Biomass and lipid productivities were extremely high in 5-L batch cultivation. ► C. sorokiniana could be a promising strain for biofuel production.
To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d−1 at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL−1 of initial glucose and 4gL−1 of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL−1 to 37.6gL−1 in the first 72h cultivation, with the DCW productivity of 12.2gL−1d−1. The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL−1d−1. The results showed C. sorokiniana could be a promising strain for biofuel production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23340103</pmid><doi>10.1016/j.biortech.2012.11.121</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2013-03, Vol.131, p.60-67 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709772953 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Algae Batch Cell Culture Techniques - methods Biofuel production Biofuels - microbiology Biological and medical sciences Bioreactors - microbiology Biotechnology Carbon Cell Proliferation Chlorella Chlorella - classification Chlorella - physiology Chlorella sorokiniana Cultivation Dry cells Energy Fuels Fundamental and applied biological sciences. Psychology Glucose Glucose - metabolism Heat-resistant Heterotrophic Hot Temperature Industrial applications and implications. Economical aspects Lipid Lipids Lipids - biosynthesis Lipids - isolation & purification Productivity Species Specificity |
title | High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20productivity%20cultivation%20of%20a%20heat-resistant%20microalga%20Chlorella%20sorokiniana%20for%20biofuel%20production&rft.jtitle=Bioresource%20technology&rft.au=Li,%20Tingting&rft.date=2013-03-01&rft.volume=131&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2012.11.121&rft_dat=%3Cproquest_cross%3E1709772953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-2801b4b02d7e240256e443571c028028f914dc1cd6feafbc1f652e4814463b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1314713239&rft_id=info:pmid/23340103&rfr_iscdi=true |