Loading…

Multi-material pressure relaxation methods for Lagrangian hydrodynamics

In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either e...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2013-08, Vol.83, p.137-143
Main Authors: Yanilkin, Yury V., Goncharov, Evgeny A., Kolobyanin, Vadim Yu, Sadchikov, Vitaly V., Kamm, James R., Shashkov, Mikhail J., Rider, William J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163
cites cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163
container_end_page 143
container_issue
container_start_page 137
container_title Computers & fluids
container_volume 83
creator Yanilkin, Yury V.
Goncharov, Evgeny A.
Kolobyanin, Vadim Yu
Sadchikov, Vitaly V.
Kamm, James R.
Shashkov, Mikhail J.
Rider, William J.
description In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.
doi_str_mv 10.1016/j.compfluid.2012.05.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709784743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793012003143</els_id><sourcerecordid>1709784743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouH78Bnv00pqvdtqjiF-w4kXPIU0ma5a2WZNW3H9vlxWv7mkYeN-HYR5CrhgtGGXVzbowod-4bvK24JTxgpYF5fSILFgNTU5BwjFZUCrLHBpBT8lZSms674LLBXl8mbrR570eMXrdZZuIKU0Rs4id_tajD0PW4_gRbMpciNlSr6IeVl4P2cfWxmC3g-69SRfkxOku4eXvPCfvD_dvd0_58vXx-e52mRvZVGPuLGdMA2dcyhLBmNaidAB1A7WroLRMcC1c27QtzBdXVnLBmW0RHTcNq8Q5ud5zNzF8TphG1ftksOv0gGFKigGdURKkOCwKvBYHREsmZAUNHHCAlDWwivIdFfZRE0NKEZ3aRN_ruFWMqp07tVZ_7tTOnaKlmt3Nzdt9E-dXfnmMKhmPg0HrI5pR2eD_ZfwANeymXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448716023</pqid></control><display><type>article</type><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</creator><creatorcontrib>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</creatorcontrib><description>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2012.05.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Closure models ; Compressible flow ; Computational fluid dynamics ; Dynamical systems ; Dynamics ; Fluid flow ; Hydrodynamics ; Lagrangian methods ; Mathematical analysis ; Mathematical models</subject><ispartof>Computers &amp; fluids, 2013-08, Vol.83, p.137-143</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</citedby><cites>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanilkin, Yury V.</creatorcontrib><creatorcontrib>Goncharov, Evgeny A.</creatorcontrib><creatorcontrib>Kolobyanin, Vadim Yu</creatorcontrib><creatorcontrib>Sadchikov, Vitaly V.</creatorcontrib><creatorcontrib>Kamm, James R.</creatorcontrib><creatorcontrib>Shashkov, Mikhail J.</creatorcontrib><creatorcontrib>Rider, William J.</creatorcontrib><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><title>Computers &amp; fluids</title><description>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</description><subject>Closure models</subject><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lagrangian methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouH78Bnv00pqvdtqjiF-w4kXPIU0ma5a2WZNW3H9vlxWv7mkYeN-HYR5CrhgtGGXVzbowod-4bvK24JTxgpYF5fSILFgNTU5BwjFZUCrLHBpBT8lZSms674LLBXl8mbrR570eMXrdZZuIKU0Rs4id_tajD0PW4_gRbMpciNlSr6IeVl4P2cfWxmC3g-69SRfkxOku4eXvPCfvD_dvd0_58vXx-e52mRvZVGPuLGdMA2dcyhLBmNaidAB1A7WroLRMcC1c27QtzBdXVnLBmW0RHTcNq8Q5ud5zNzF8TphG1ftksOv0gGFKigGdURKkOCwKvBYHREsmZAUNHHCAlDWwivIdFfZRE0NKEZ3aRN_ruFWMqp07tVZ_7tTOnaKlmt3Nzdt9E-dXfnmMKhmPg0HrI5pR2eD_ZfwANeymXA</recordid><startdate>20130816</startdate><enddate>20130816</enddate><creator>Yanilkin, Yury V.</creator><creator>Goncharov, Evgeny A.</creator><creator>Kolobyanin, Vadim Yu</creator><creator>Sadchikov, Vitaly V.</creator><creator>Kamm, James R.</creator><creator>Shashkov, Mikhail J.</creator><creator>Rider, William J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130816</creationdate><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><author>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Closure models</topic><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lagrangian methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanilkin, Yury V.</creatorcontrib><creatorcontrib>Goncharov, Evgeny A.</creatorcontrib><creatorcontrib>Kolobyanin, Vadim Yu</creatorcontrib><creatorcontrib>Sadchikov, Vitaly V.</creatorcontrib><creatorcontrib>Kamm, James R.</creatorcontrib><creatorcontrib>Shashkov, Mikhail J.</creatorcontrib><creatorcontrib>Rider, William J.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanilkin, Yury V.</au><au>Goncharov, Evgeny A.</au><au>Kolobyanin, Vadim Yu</au><au>Sadchikov, Vitaly V.</au><au>Kamm, James R.</au><au>Shashkov, Mikhail J.</au><au>Rider, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</atitle><jtitle>Computers &amp; fluids</jtitle><date>2013-08-16</date><risdate>2013</risdate><volume>83</volume><spage>137</spage><epage>143</epage><pages>137-143</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2012.05.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2013-08, Vol.83, p.137-143
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_1709784743
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Closure models
Compressible flow
Computational fluid dynamics
Dynamical systems
Dynamics
Fluid flow
Hydrodynamics
Lagrangian methods
Mathematical analysis
Mathematical models
title Multi-material pressure relaxation methods for Lagrangian hydrodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-material%20pressure%20relaxation%20methods%20for%20Lagrangian%20hydrodynamics&rft.jtitle=Computers%20&%20fluids&rft.au=Yanilkin,%20Yury%20V.&rft.date=2013-08-16&rft.volume=83&rft.spage=137&rft.epage=143&rft.pages=137-143&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2012.05.020&rft_dat=%3Cproquest_cross%3E1709784743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448716023&rft_id=info:pmid/&rfr_iscdi=true