Loading…
Multi-material pressure relaxation methods for Lagrangian hydrodynamics
In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either e...
Saved in:
Published in: | Computers & fluids 2013-08, Vol.83, p.137-143 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163 |
container_end_page | 143 |
container_issue | |
container_start_page | 137 |
container_title | Computers & fluids |
container_volume | 83 |
creator | Yanilkin, Yury V. Goncharov, Evgeny A. Kolobyanin, Vadim Yu Sadchikov, Vitaly V. Kamm, James R. Shashkov, Mikhail J. Rider, William J. |
description | In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results. |
doi_str_mv | 10.1016/j.compfluid.2012.05.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709784743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793012003143</els_id><sourcerecordid>1709784743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouH78Bnv00pqvdtqjiF-w4kXPIU0ma5a2WZNW3H9vlxWv7mkYeN-HYR5CrhgtGGXVzbowod-4bvK24JTxgpYF5fSILFgNTU5BwjFZUCrLHBpBT8lZSms674LLBXl8mbrR570eMXrdZZuIKU0Rs4id_tajD0PW4_gRbMpciNlSr6IeVl4P2cfWxmC3g-69SRfkxOku4eXvPCfvD_dvd0_58vXx-e52mRvZVGPuLGdMA2dcyhLBmNaidAB1A7WroLRMcC1c27QtzBdXVnLBmW0RHTcNq8Q5ud5zNzF8TphG1ftksOv0gGFKigGdURKkOCwKvBYHREsmZAUNHHCAlDWwivIdFfZRE0NKEZ3aRN_ruFWMqp07tVZ_7tTOnaKlmt3Nzdt9E-dXfnmMKhmPg0HrI5pR2eD_ZfwANeymXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448716023</pqid></control><display><type>article</type><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</creator><creatorcontrib>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</creatorcontrib><description>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2012.05.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Closure models ; Compressible flow ; Computational fluid dynamics ; Dynamical systems ; Dynamics ; Fluid flow ; Hydrodynamics ; Lagrangian methods ; Mathematical analysis ; Mathematical models</subject><ispartof>Computers & fluids, 2013-08, Vol.83, p.137-143</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</citedby><cites>FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanilkin, Yury V.</creatorcontrib><creatorcontrib>Goncharov, Evgeny A.</creatorcontrib><creatorcontrib>Kolobyanin, Vadim Yu</creatorcontrib><creatorcontrib>Sadchikov, Vitaly V.</creatorcontrib><creatorcontrib>Kamm, James R.</creatorcontrib><creatorcontrib>Shashkov, Mikhail J.</creatorcontrib><creatorcontrib>Rider, William J.</creatorcontrib><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><title>Computers & fluids</title><description>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</description><subject>Closure models</subject><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lagrangian methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouH78Bnv00pqvdtqjiF-w4kXPIU0ma5a2WZNW3H9vlxWv7mkYeN-HYR5CrhgtGGXVzbowod-4bvK24JTxgpYF5fSILFgNTU5BwjFZUCrLHBpBT8lZSms674LLBXl8mbrR570eMXrdZZuIKU0Rs4id_tajD0PW4_gRbMpciNlSr6IeVl4P2cfWxmC3g-69SRfkxOku4eXvPCfvD_dvd0_58vXx-e52mRvZVGPuLGdMA2dcyhLBmNaidAB1A7WroLRMcC1c27QtzBdXVnLBmW0RHTcNq8Q5ud5zNzF8TphG1ftksOv0gGFKigGdURKkOCwKvBYHREsmZAUNHHCAlDWwivIdFfZRE0NKEZ3aRN_ruFWMqp07tVZ_7tTOnaKlmt3Nzdt9E-dXfnmMKhmPg0HrI5pR2eD_ZfwANeymXA</recordid><startdate>20130816</startdate><enddate>20130816</enddate><creator>Yanilkin, Yury V.</creator><creator>Goncharov, Evgeny A.</creator><creator>Kolobyanin, Vadim Yu</creator><creator>Sadchikov, Vitaly V.</creator><creator>Kamm, James R.</creator><creator>Shashkov, Mikhail J.</creator><creator>Rider, William J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130816</creationdate><title>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</title><author>Yanilkin, Yury V. ; Goncharov, Evgeny A. ; Kolobyanin, Vadim Yu ; Sadchikov, Vitaly V. ; Kamm, James R. ; Shashkov, Mikhail J. ; Rider, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Closure models</topic><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lagrangian methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanilkin, Yury V.</creatorcontrib><creatorcontrib>Goncharov, Evgeny A.</creatorcontrib><creatorcontrib>Kolobyanin, Vadim Yu</creatorcontrib><creatorcontrib>Sadchikov, Vitaly V.</creatorcontrib><creatorcontrib>Kamm, James R.</creatorcontrib><creatorcontrib>Shashkov, Mikhail J.</creatorcontrib><creatorcontrib>Rider, William J.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanilkin, Yury V.</au><au>Goncharov, Evgeny A.</au><au>Kolobyanin, Vadim Yu</au><au>Sadchikov, Vitaly V.</au><au>Kamm, James R.</au><au>Shashkov, Mikhail J.</au><au>Rider, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-material pressure relaxation methods for Lagrangian hydrodynamics</atitle><jtitle>Computers & fluids</jtitle><date>2013-08-16</date><risdate>2013</risdate><volume>83</volume><spage>137</spage><epage>143</epage><pages>137-143</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>In Arbitrary Lagrangian–Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model—either explicit or implicit—for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2012.05.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2013-08, Vol.83, p.137-143 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709784743 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Closure models Compressible flow Computational fluid dynamics Dynamical systems Dynamics Fluid flow Hydrodynamics Lagrangian methods Mathematical analysis Mathematical models |
title | Multi-material pressure relaxation methods for Lagrangian hydrodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-material%20pressure%20relaxation%20methods%20for%20Lagrangian%20hydrodynamics&rft.jtitle=Computers%20&%20fluids&rft.au=Yanilkin,%20Yury%20V.&rft.date=2013-08-16&rft.volume=83&rft.spage=137&rft.epage=143&rft.pages=137-143&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2012.05.020&rft_dat=%3Cproquest_cross%3E1709784743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-fd211a7212445e7ccbde4f778978f675d132a3fb9bb70456d42321dbeef2c9163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448716023&rft_id=info:pmid/&rfr_iscdi=true |