Loading…
Mechanistic–Empirical Evaluation of Aggregate Base and Granular Subbase Quality Affecting Flexible Pavement Performance in Minnesota
Since high-quality aggregate materials are becoming increasingly scarce and expensive, optimizing the use of locally available materials for aggregate bases and granular subbases on the basis of cost and mechanistic properties linked to pavement performance has become an economically viable alternat...
Saved in:
Published in: | Transportation research record 2011-01, Vol.2227 (1), p.97-106 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since high-quality aggregate materials are becoming increasingly scarce and expensive, optimizing the use of locally available materials for aggregate bases and granular subbases on the basis of cost and mechanistic properties linked to pavement performance has become an economically viable alternative. This study investigated the effect of quality of unbound aggregate material on conventional flexible pavement performance in Minnesota through a mechanistic–empirical pavement design approach. A comprehensive matrix of conventional flexible pavement layer thicknesses and mechanistic design moduli was carefully designed to conduct mechanistic analyses for the Minnesota Department of Transportation flexible pavement design program (MnPAVE) with the MnPAVE program for pavement sections in two climatic regions in Minnesota. The type and the quality classes of unbound aggregate materials, identified as high, medium, and low, were characterized with stress-dependent resilient modulus (MR) models from a statewide laboratory-tested aggregate MR database. Despite conventional wisdom to the contrary, in some cases the granular subbase material had much higher moduli than the aggregate base. The typical high, medium, and low modulus values for the aggregate base and granular subbase layers, determined from the modulus distributions predicted by the nonlinear finite element program GT-PAVE, were subsequently input during MnPAVE analyses to calculate fatigue and rutting life expectancies for the comprehensive matrix of pavement structures studied. From the results, use of locally available and somewhat marginal materials may be quite cost-effective for low-volume roads, provided that the 20-year design traffic level does not exceed 1.5 million equivalent single-axle loads. A high-quality, stiff subbase was also found to exhibit a bridging effect that better protected the subgrade and offset the detrimental effects of low base stiffness on rutting performance. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/2227-11 |