Loading…
Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel
Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The m...
Saved in:
Published in: | The Journal of biological chemistry 2006-03, Vol.281 (12), p.7994-8009 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53 |
container_end_page | 8009 |
container_issue | 12 |
container_start_page | 7994 |
container_title | The Journal of biological chemistry |
container_volume | 281 |
creator | Beahm, Derek L. Oshima, Atsunori Gaietta, Guido M. Hand, Galen M. Smock, Amy E. Zucker, Shoshanna N. Toloue, Masoud M. Chandrasekhar, Anjana Nicholson, Bruce J. Sosinsky, Gina E. |
description | Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo. |
doi_str_mv | 10.1074/jbc.M506533200 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17113064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819766150</els_id><sourcerecordid>17113064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EotvClSPyiVsWT5zE3iMKpQW14lIkbpZjj1lXib3Yyaq8Bm9CH6TPhMuu1BP2YaTR_3_j8U_IG2BrYKJ5fzuY9XXLupbzmrFnZAVM8oq38P05WTFWQ7WpW3lCTnO-ZeU0G3hJTqBrmACxWZHf18usZx8DjY5q2seQMe3R0pttwhh8QOoDnbdYGj6VdtIhTzgNpSK9xNHfPTof_lRUB0sf7quCCHjnQ6Z9Qj1jLtiPcfJBh7kK-KNM2yPtx5jLlAu9o1-WYP69oN_qYh1fkRdOjxlfH-sZ-fbp_Ka_rK6-XnzuP1xVpmnlXNVgJbTGbYyQekAjBisdl6i72tWyXCNq65xF0cEAAzeDsyA0NwyBS9vyM_LuwN2l-HPBPKvJZ4PjWDaLS1YgADjrmiJcH4QmxZwTOrVLftLplwKmHlNQJQX1lEIxvD2Sl2FC-yQ_fnsRyIMAy357j0ll4zEYtD6hmZWN_n_svzmEmWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17113064</pqid></control><display><type>article</type><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</creator><creatorcontrib>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</creatorcontrib><description>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M506533200</identifier><identifier>PMID: 16407179</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Baculoviridae - metabolism ; Cell Line ; Cell Membrane - metabolism ; Connexin 26 ; Connexin 43 - genetics ; Connexins - chemistry ; Connexins - genetics ; Cryoelectron Microscopy ; Cysteine - chemistry ; Cytoplasm - metabolism ; DNA, Complementary - metabolism ; Electrophysiology ; Fluorescent Dyes - pharmacology ; Gap Junctions ; Genes, Dominant ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Insecta ; Keratinocytes - metabolism ; Light ; Microscopy, Electron ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Oocytes - metabolism ; Oxygen - metabolism ; Phylogeny ; Point Mutation ; Rats ; RNA, Complementary - metabolism ; Threonine - chemistry ; Time Factors ; Transfection ; Xenopus</subject><ispartof>The Journal of biological chemistry, 2006-03, Vol.281 (12), p.7994-8009</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</citedby><cites>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819766150$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16407179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beahm, Derek L.</creatorcontrib><creatorcontrib>Oshima, Atsunori</creatorcontrib><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Hand, Galen M.</creatorcontrib><creatorcontrib>Smock, Amy E.</creatorcontrib><creatorcontrib>Zucker, Shoshanna N.</creatorcontrib><creatorcontrib>Toloue, Masoud M.</creatorcontrib><creatorcontrib>Chandrasekhar, Anjana</creatorcontrib><creatorcontrib>Nicholson, Bruce J.</creatorcontrib><creatorcontrib>Sosinsky, Gina E.</creatorcontrib><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Baculoviridae - metabolism</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Connexin 26</subject><subject>Connexin 43 - genetics</subject><subject>Connexins - chemistry</subject><subject>Connexins - genetics</subject><subject>Cryoelectron Microscopy</subject><subject>Cysteine - chemistry</subject><subject>Cytoplasm - metabolism</subject><subject>DNA, Complementary - metabolism</subject><subject>Electrophysiology</subject><subject>Fluorescent Dyes - pharmacology</subject><subject>Gap Junctions</subject><subject>Genes, Dominant</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Insecta</subject><subject>Keratinocytes - metabolism</subject><subject>Light</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Phylogeny</subject><subject>Point Mutation</subject><subject>Rats</subject><subject>RNA, Complementary - metabolism</subject><subject>Threonine - chemistry</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Xenopus</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi0EotvClSPyiVsWT5zE3iMKpQW14lIkbpZjj1lXib3Yyaq8Bm9CH6TPhMuu1BP2YaTR_3_j8U_IG2BrYKJ5fzuY9XXLupbzmrFnZAVM8oq38P05WTFWQ7WpW3lCTnO-ZeU0G3hJTqBrmACxWZHf18usZx8DjY5q2seQMe3R0pttwhh8QOoDnbdYGj6VdtIhTzgNpSK9xNHfPTof_lRUB0sf7quCCHjnQ6Z9Qj1jLtiPcfJBh7kK-KNM2yPtx5jLlAu9o1-WYP69oN_qYh1fkRdOjxlfH-sZ-fbp_Ka_rK6-XnzuP1xVpmnlXNVgJbTGbYyQekAjBisdl6i72tWyXCNq65xF0cEAAzeDsyA0NwyBS9vyM_LuwN2l-HPBPKvJZ4PjWDaLS1YgADjrmiJcH4QmxZwTOrVLftLplwKmHlNQJQX1lEIxvD2Sl2FC-yQ_fnsRyIMAy357j0ll4zEYtD6hmZWN_n_svzmEmWQ</recordid><startdate>20060324</startdate><enddate>20060324</enddate><creator>Beahm, Derek L.</creator><creator>Oshima, Atsunori</creator><creator>Gaietta, Guido M.</creator><creator>Hand, Galen M.</creator><creator>Smock, Amy E.</creator><creator>Zucker, Shoshanna N.</creator><creator>Toloue, Masoud M.</creator><creator>Chandrasekhar, Anjana</creator><creator>Nicholson, Bruce J.</creator><creator>Sosinsky, Gina E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20060324</creationdate><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><author>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Baculoviridae - metabolism</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Connexin 26</topic><topic>Connexin 43 - genetics</topic><topic>Connexins - chemistry</topic><topic>Connexins - genetics</topic><topic>Cryoelectron Microscopy</topic><topic>Cysteine - chemistry</topic><topic>Cytoplasm - metabolism</topic><topic>DNA, Complementary - metabolism</topic><topic>Electrophysiology</topic><topic>Fluorescent Dyes - pharmacology</topic><topic>Gap Junctions</topic><topic>Genes, Dominant</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Insecta</topic><topic>Keratinocytes - metabolism</topic><topic>Light</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Phylogeny</topic><topic>Point Mutation</topic><topic>Rats</topic><topic>RNA, Complementary - metabolism</topic><topic>Threonine - chemistry</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beahm, Derek L.</creatorcontrib><creatorcontrib>Oshima, Atsunori</creatorcontrib><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Hand, Galen M.</creatorcontrib><creatorcontrib>Smock, Amy E.</creatorcontrib><creatorcontrib>Zucker, Shoshanna N.</creatorcontrib><creatorcontrib>Toloue, Masoud M.</creatorcontrib><creatorcontrib>Chandrasekhar, Anjana</creatorcontrib><creatorcontrib>Nicholson, Bruce J.</creatorcontrib><creatorcontrib>Sosinsky, Gina E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beahm, Derek L.</au><au>Oshima, Atsunori</au><au>Gaietta, Guido M.</au><au>Hand, Galen M.</au><au>Smock, Amy E.</au><au>Zucker, Shoshanna N.</au><au>Toloue, Masoud M.</au><au>Chandrasekhar, Anjana</au><au>Nicholson, Bruce J.</au><au>Sosinsky, Gina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-03-24</date><risdate>2006</risdate><volume>281</volume><issue>12</issue><spage>7994</spage><epage>8009</epage><pages>7994-8009</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16407179</pmid><doi>10.1074/jbc.M506533200</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2006-03, Vol.281 (12), p.7994-8009 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_17113064 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Amino Acid Sequence Animals Baculoviridae - metabolism Cell Line Cell Membrane - metabolism Connexin 26 Connexin 43 - genetics Connexins - chemistry Connexins - genetics Cryoelectron Microscopy Cysteine - chemistry Cytoplasm - metabolism DNA, Complementary - metabolism Electrophysiology Fluorescent Dyes - pharmacology Gap Junctions Genes, Dominant HeLa Cells Humans Image Processing, Computer-Assisted Insecta Keratinocytes - metabolism Light Microscopy, Electron Microscopy, Fluorescence Molecular Sequence Data Mutagenesis, Site-Directed Mutation Oocytes - metabolism Oxygen - metabolism Phylogeny Point Mutation Rats RNA, Complementary - metabolism Threonine - chemistry Time Factors Transfection Xenopus |
title | Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20a%20Conserved%20Threonine%20in%20the%20Third%20Transmembrane%20Helix%20of%20%CE%B1-%20and%20%CE%B2-Connexins%20Creates%20a%20Dominant-negative%20Closed%20Gap%20Junction%20Channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Beahm,%20Derek%20L.&rft.date=2006-03-24&rft.volume=281&rft.issue=12&rft.spage=7994&rft.epage=8009&rft.pages=7994-8009&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M506533200&rft_dat=%3Cproquest_cross%3E17113064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17113064&rft_id=info:pmid/16407179&rfr_iscdi=true |