Loading…

Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel

Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The m...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-03, Vol.281 (12), p.7994-8009
Main Authors: Beahm, Derek L., Oshima, Atsunori, Gaietta, Guido M., Hand, Galen M., Smock, Amy E., Zucker, Shoshanna N., Toloue, Masoud M., Chandrasekhar, Anjana, Nicholson, Bruce J., Sosinsky, Gina E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53
cites cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53
container_end_page 8009
container_issue 12
container_start_page 7994
container_title The Journal of biological chemistry
container_volume 281
creator Beahm, Derek L.
Oshima, Atsunori
Gaietta, Guido M.
Hand, Galen M.
Smock, Amy E.
Zucker, Shoshanna N.
Toloue, Masoud M.
Chandrasekhar, Anjana
Nicholson, Bruce J.
Sosinsky, Gina E.
description Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.
doi_str_mv 10.1074/jbc.M506533200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17113064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819766150</els_id><sourcerecordid>17113064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EotvClSPyiVsWT5zE3iMKpQW14lIkbpZjj1lXib3Yyaq8Bm9CH6TPhMuu1BP2YaTR_3_j8U_IG2BrYKJ5fzuY9XXLupbzmrFnZAVM8oq38P05WTFWQ7WpW3lCTnO-ZeU0G3hJTqBrmACxWZHf18usZx8DjY5q2seQMe3R0pttwhh8QOoDnbdYGj6VdtIhTzgNpSK9xNHfPTof_lRUB0sf7quCCHjnQ6Z9Qj1jLtiPcfJBh7kK-KNM2yPtx5jLlAu9o1-WYP69oN_qYh1fkRdOjxlfH-sZ-fbp_Ka_rK6-XnzuP1xVpmnlXNVgJbTGbYyQekAjBisdl6i72tWyXCNq65xF0cEAAzeDsyA0NwyBS9vyM_LuwN2l-HPBPKvJZ4PjWDaLS1YgADjrmiJcH4QmxZwTOrVLftLplwKmHlNQJQX1lEIxvD2Sl2FC-yQ_fnsRyIMAy357j0ll4zEYtD6hmZWN_n_svzmEmWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17113064</pqid></control><display><type>article</type><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</creator><creatorcontrib>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</creatorcontrib><description>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M506533200</identifier><identifier>PMID: 16407179</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Baculoviridae - metabolism ; Cell Line ; Cell Membrane - metabolism ; Connexin 26 ; Connexin 43 - genetics ; Connexins - chemistry ; Connexins - genetics ; Cryoelectron Microscopy ; Cysteine - chemistry ; Cytoplasm - metabolism ; DNA, Complementary - metabolism ; Electrophysiology ; Fluorescent Dyes - pharmacology ; Gap Junctions ; Genes, Dominant ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Insecta ; Keratinocytes - metabolism ; Light ; Microscopy, Electron ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Oocytes - metabolism ; Oxygen - metabolism ; Phylogeny ; Point Mutation ; Rats ; RNA, Complementary - metabolism ; Threonine - chemistry ; Time Factors ; Transfection ; Xenopus</subject><ispartof>The Journal of biological chemistry, 2006-03, Vol.281 (12), p.7994-8009</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</citedby><cites>FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819766150$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16407179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beahm, Derek L.</creatorcontrib><creatorcontrib>Oshima, Atsunori</creatorcontrib><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Hand, Galen M.</creatorcontrib><creatorcontrib>Smock, Amy E.</creatorcontrib><creatorcontrib>Zucker, Shoshanna N.</creatorcontrib><creatorcontrib>Toloue, Masoud M.</creatorcontrib><creatorcontrib>Chandrasekhar, Anjana</creatorcontrib><creatorcontrib>Nicholson, Bruce J.</creatorcontrib><creatorcontrib>Sosinsky, Gina E.</creatorcontrib><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Baculoviridae - metabolism</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Connexin 26</subject><subject>Connexin 43 - genetics</subject><subject>Connexins - chemistry</subject><subject>Connexins - genetics</subject><subject>Cryoelectron Microscopy</subject><subject>Cysteine - chemistry</subject><subject>Cytoplasm - metabolism</subject><subject>DNA, Complementary - metabolism</subject><subject>Electrophysiology</subject><subject>Fluorescent Dyes - pharmacology</subject><subject>Gap Junctions</subject><subject>Genes, Dominant</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Insecta</subject><subject>Keratinocytes - metabolism</subject><subject>Light</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Phylogeny</subject><subject>Point Mutation</subject><subject>Rats</subject><subject>RNA, Complementary - metabolism</subject><subject>Threonine - chemistry</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Xenopus</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi0EotvClSPyiVsWT5zE3iMKpQW14lIkbpZjj1lXib3Yyaq8Bm9CH6TPhMuu1BP2YaTR_3_j8U_IG2BrYKJ5fzuY9XXLupbzmrFnZAVM8oq38P05WTFWQ7WpW3lCTnO-ZeU0G3hJTqBrmACxWZHf18usZx8DjY5q2seQMe3R0pttwhh8QOoDnbdYGj6VdtIhTzgNpSK9xNHfPTof_lRUB0sf7quCCHjnQ6Z9Qj1jLtiPcfJBh7kK-KNM2yPtx5jLlAu9o1-WYP69oN_qYh1fkRdOjxlfH-sZ-fbp_Ka_rK6-XnzuP1xVpmnlXNVgJbTGbYyQekAjBisdl6i72tWyXCNq65xF0cEAAzeDsyA0NwyBS9vyM_LuwN2l-HPBPKvJZ4PjWDaLS1YgADjrmiJcH4QmxZwTOrVLftLplwKmHlNQJQX1lEIxvD2Sl2FC-yQ_fnsRyIMAy357j0ll4zEYtD6hmZWN_n_svzmEmWQ</recordid><startdate>20060324</startdate><enddate>20060324</enddate><creator>Beahm, Derek L.</creator><creator>Oshima, Atsunori</creator><creator>Gaietta, Guido M.</creator><creator>Hand, Galen M.</creator><creator>Smock, Amy E.</creator><creator>Zucker, Shoshanna N.</creator><creator>Toloue, Masoud M.</creator><creator>Chandrasekhar, Anjana</creator><creator>Nicholson, Bruce J.</creator><creator>Sosinsky, Gina E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20060324</creationdate><title>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</title><author>Beahm, Derek L. ; Oshima, Atsunori ; Gaietta, Guido M. ; Hand, Galen M. ; Smock, Amy E. ; Zucker, Shoshanna N. ; Toloue, Masoud M. ; Chandrasekhar, Anjana ; Nicholson, Bruce J. ; Sosinsky, Gina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Baculoviridae - metabolism</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Connexin 26</topic><topic>Connexin 43 - genetics</topic><topic>Connexins - chemistry</topic><topic>Connexins - genetics</topic><topic>Cryoelectron Microscopy</topic><topic>Cysteine - chemistry</topic><topic>Cytoplasm - metabolism</topic><topic>DNA, Complementary - metabolism</topic><topic>Electrophysiology</topic><topic>Fluorescent Dyes - pharmacology</topic><topic>Gap Junctions</topic><topic>Genes, Dominant</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Insecta</topic><topic>Keratinocytes - metabolism</topic><topic>Light</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Phylogeny</topic><topic>Point Mutation</topic><topic>Rats</topic><topic>RNA, Complementary - metabolism</topic><topic>Threonine - chemistry</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beahm, Derek L.</creatorcontrib><creatorcontrib>Oshima, Atsunori</creatorcontrib><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Hand, Galen M.</creatorcontrib><creatorcontrib>Smock, Amy E.</creatorcontrib><creatorcontrib>Zucker, Shoshanna N.</creatorcontrib><creatorcontrib>Toloue, Masoud M.</creatorcontrib><creatorcontrib>Chandrasekhar, Anjana</creatorcontrib><creatorcontrib>Nicholson, Bruce J.</creatorcontrib><creatorcontrib>Sosinsky, Gina E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beahm, Derek L.</au><au>Oshima, Atsunori</au><au>Gaietta, Guido M.</au><au>Hand, Galen M.</au><au>Smock, Amy E.</au><au>Zucker, Shoshanna N.</au><au>Toloue, Masoud M.</au><au>Chandrasekhar, Anjana</au><au>Nicholson, Bruce J.</au><au>Sosinsky, Gina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-03-24</date><risdate>2006</risdate><volume>281</volume><issue>12</issue><spage>7994</spage><epage>8009</epage><pages>7994-8009</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the α- and β-connexin subgroups but not the γ-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16407179</pmid><doi>10.1074/jbc.M506533200</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-03, Vol.281 (12), p.7994-8009
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_17113064
source Elsevier ScienceDirect Journals; PubMed Central
subjects Amino Acid Sequence
Animals
Baculoviridae - metabolism
Cell Line
Cell Membrane - metabolism
Connexin 26
Connexin 43 - genetics
Connexins - chemistry
Connexins - genetics
Cryoelectron Microscopy
Cysteine - chemistry
Cytoplasm - metabolism
DNA, Complementary - metabolism
Electrophysiology
Fluorescent Dyes - pharmacology
Gap Junctions
Genes, Dominant
HeLa Cells
Humans
Image Processing, Computer-Assisted
Insecta
Keratinocytes - metabolism
Light
Microscopy, Electron
Microscopy, Fluorescence
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation
Oocytes - metabolism
Oxygen - metabolism
Phylogeny
Point Mutation
Rats
RNA, Complementary - metabolism
Threonine - chemistry
Time Factors
Transfection
Xenopus
title Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20a%20Conserved%20Threonine%20in%20the%20Third%20Transmembrane%20Helix%20of%20%CE%B1-%20and%20%CE%B2-Connexins%20Creates%20a%20Dominant-negative%20Closed%20Gap%20Junction%20Channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Beahm,%20Derek%20L.&rft.date=2006-03-24&rft.volume=281&rft.issue=12&rft.spage=7994&rft.epage=8009&rft.pages=7994-8009&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M506533200&rft_dat=%3Cproquest_cross%3E17113064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-21d815cf9c78abec7bd8f38ea62f28282c72dffde761b1b3cbfd17a3c0e138d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17113064&rft_id=info:pmid/16407179&rfr_iscdi=true