Loading…

Tensor Dictionary Learning for Positive Definite Matrices

Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2015-11, Vol.24 (11), p.4592-4601
Main Authors: Sivalingam, Ravishankar, Boley, Daniel, Morellas, Vassilios, Papanikolopoulos, Nikolaos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3
cites cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3
container_end_page 4601
container_issue 11
container_start_page 4592
container_title IEEE transactions on image processing
container_volume 24
creator Sivalingam, Ravishankar
Boley, Daniel
Morellas, Vassilios
Papanikolopoulos, Nikolaos
description Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
doi_str_mv 10.1109/TIP.2015.2440766
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711536883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7117399</ieee_id><sourcerecordid>1711536883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmNwR0JCPXLpsJsmaY5o42PSEDuMc9SmLgra2pF0SPv3ZNrYyZb9vv54GLtFGCOCflzOFuMMUIyzPAcl5Rkbos4xBciz85iDUKnCXA_YVQjfAJgLlJdskEkQ0QBDppfUhs4nU2d717Wl3yVzKn3r2q-kifVFF1zvfimZUuNa11PyXvbeWQrX7KIpV4FujnHEPl-el5O3dP7xOps8zVPLUfdpHe-UVkpdWSxq1MoSYlUIDsQJQSpSStcVL0BVorZS10XDS4SatESUxEfs4TB347ufLYXerF2wtFqVLXXbYFAhCi6LgkcpHKTWdyF4aszGu3X8ySCYPTATgZk9MHMEFi33x-nbak31yfBPKAruDgJHRKd23Km41vwPWQNtjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711536883</pqid></control><display><type>article</type><title>Tensor Dictionary Learning for Positive Definite Matrices</title><source>IEEE Xplore (Online service)</source><creator>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</creator><creatorcontrib>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</creatorcontrib><description>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2440766</identifier><identifier>PMID: 26054070</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Covariance matrices ; Dictionaries ; dictionary learning ; Encoding ; Image coding ; Linear programming ; optimization ; positive definite matrices ; Radio frequency ; region covariance descriptors ; Sparse coding ; Sparse matrices</subject><ispartof>IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4592-4601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</citedby><cites>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7117399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26054070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivalingam, Ravishankar</creatorcontrib><creatorcontrib>Boley, Daniel</creatorcontrib><creatorcontrib>Morellas, Vassilios</creatorcontrib><creatorcontrib>Papanikolopoulos, Nikolaos</creatorcontrib><title>Tensor Dictionary Learning for Positive Definite Matrices</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</description><subject>Covariance matrices</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Encoding</subject><subject>Image coding</subject><subject>Linear programming</subject><subject>optimization</subject><subject>positive definite matrices</subject><subject>Radio frequency</subject><subject>region covariance descriptors</subject><subject>Sparse coding</subject><subject>Sparse matrices</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmNwR0JCPXLpsJsmaY5o42PSEDuMc9SmLgra2pF0SPv3ZNrYyZb9vv54GLtFGCOCflzOFuMMUIyzPAcl5Rkbos4xBciz85iDUKnCXA_YVQjfAJgLlJdskEkQ0QBDppfUhs4nU2d717Wl3yVzKn3r2q-kifVFF1zvfimZUuNa11PyXvbeWQrX7KIpV4FujnHEPl-el5O3dP7xOps8zVPLUfdpHe-UVkpdWSxq1MoSYlUIDsQJQSpSStcVL0BVorZS10XDS4SatESUxEfs4TB347ufLYXerF2wtFqVLXXbYFAhCi6LgkcpHKTWdyF4aszGu3X8ySCYPTATgZk9MHMEFi33x-nbak31yfBPKAruDgJHRKd23Km41vwPWQNtjQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Sivalingam, Ravishankar</creator><creator>Boley, Daniel</creator><creator>Morellas, Vassilios</creator><creator>Papanikolopoulos, Nikolaos</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Tensor Dictionary Learning for Positive Definite Matrices</title><author>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Covariance matrices</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Encoding</topic><topic>Image coding</topic><topic>Linear programming</topic><topic>optimization</topic><topic>positive definite matrices</topic><topic>Radio frequency</topic><topic>region covariance descriptors</topic><topic>Sparse coding</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivalingam, Ravishankar</creatorcontrib><creatorcontrib>Boley, Daniel</creatorcontrib><creatorcontrib>Morellas, Vassilios</creatorcontrib><creatorcontrib>Papanikolopoulos, Nikolaos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivalingam, Ravishankar</au><au>Boley, Daniel</au><au>Morellas, Vassilios</au><au>Papanikolopoulos, Nikolaos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Dictionary Learning for Positive Definite Matrices</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-11</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>4592</spage><epage>4601</epage><pages>4592-4601</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26054070</pmid><doi>10.1109/TIP.2015.2440766</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4592-4601
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1711536883
source IEEE Xplore (Online service)
subjects Covariance matrices
Dictionaries
dictionary learning
Encoding
Image coding
Linear programming
optimization
positive definite matrices
Radio frequency
region covariance descriptors
Sparse coding
Sparse matrices
title Tensor Dictionary Learning for Positive Definite Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Dictionary%20Learning%20for%20Positive%20Definite%20Matrices&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sivalingam,%20Ravishankar&rft.date=2015-11&rft.volume=24&rft.issue=11&rft.spage=4592&rft.epage=4601&rft.pages=4592-4601&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2440766&rft_dat=%3Cproquest_ieee_%3E1711536883%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711536883&rft_id=info:pmid/26054070&rft_ieee_id=7117399&rfr_iscdi=true