Loading…
Tensor Dictionary Learning for Positive Definite Matrices
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances,...
Saved in:
Published in: | IEEE transactions on image processing 2015-11, Vol.24 (11), p.4592-4601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3 |
container_end_page | 4601 |
container_issue | 11 |
container_start_page | 4592 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Sivalingam, Ravishankar Boley, Daniel Morellas, Vassilios Papanikolopoulos, Nikolaos |
description | Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here. |
doi_str_mv | 10.1109/TIP.2015.2440766 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1711536883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7117399</ieee_id><sourcerecordid>1711536883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmNwR0JCPXLpsJsmaY5o42PSEDuMc9SmLgra2pF0SPv3ZNrYyZb9vv54GLtFGCOCflzOFuMMUIyzPAcl5Rkbos4xBciz85iDUKnCXA_YVQjfAJgLlJdskEkQ0QBDppfUhs4nU2d717Wl3yVzKn3r2q-kifVFF1zvfimZUuNa11PyXvbeWQrX7KIpV4FujnHEPl-el5O3dP7xOps8zVPLUfdpHe-UVkpdWSxq1MoSYlUIDsQJQSpSStcVL0BVorZS10XDS4SatESUxEfs4TB347ufLYXerF2wtFqVLXXbYFAhCi6LgkcpHKTWdyF4aszGu3X8ySCYPTATgZk9MHMEFi33x-nbak31yfBPKAruDgJHRKd23Km41vwPWQNtjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711536883</pqid></control><display><type>article</type><title>Tensor Dictionary Learning for Positive Definite Matrices</title><source>IEEE Xplore (Online service)</source><creator>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</creator><creatorcontrib>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</creatorcontrib><description>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2440766</identifier><identifier>PMID: 26054070</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Covariance matrices ; Dictionaries ; dictionary learning ; Encoding ; Image coding ; Linear programming ; optimization ; positive definite matrices ; Radio frequency ; region covariance descriptors ; Sparse coding ; Sparse matrices</subject><ispartof>IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4592-4601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</citedby><cites>FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7117399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26054070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivalingam, Ravishankar</creatorcontrib><creatorcontrib>Boley, Daniel</creatorcontrib><creatorcontrib>Morellas, Vassilios</creatorcontrib><creatorcontrib>Papanikolopoulos, Nikolaos</creatorcontrib><title>Tensor Dictionary Learning for Positive Definite Matrices</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</description><subject>Covariance matrices</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Encoding</subject><subject>Image coding</subject><subject>Linear programming</subject><subject>optimization</subject><subject>positive definite matrices</subject><subject>Radio frequency</subject><subject>region covariance descriptors</subject><subject>Sparse coding</subject><subject>Sparse matrices</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmNwR0JCPXLpsJsmaY5o42PSEDuMc9SmLgra2pF0SPv3ZNrYyZb9vv54GLtFGCOCflzOFuMMUIyzPAcl5Rkbos4xBciz85iDUKnCXA_YVQjfAJgLlJdskEkQ0QBDppfUhs4nU2d717Wl3yVzKn3r2q-kifVFF1zvfimZUuNa11PyXvbeWQrX7KIpV4FujnHEPl-el5O3dP7xOps8zVPLUfdpHe-UVkpdWSxq1MoSYlUIDsQJQSpSStcVL0BVorZS10XDS4SatESUxEfs4TB347ufLYXerF2wtFqVLXXbYFAhCi6LgkcpHKTWdyF4aszGu3X8ySCYPTATgZk9MHMEFi33x-nbak31yfBPKAruDgJHRKd23Km41vwPWQNtjQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Sivalingam, Ravishankar</creator><creator>Boley, Daniel</creator><creator>Morellas, Vassilios</creator><creator>Papanikolopoulos, Nikolaos</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Tensor Dictionary Learning for Positive Definite Matrices</title><author>Sivalingam, Ravishankar ; Boley, Daniel ; Morellas, Vassilios ; Papanikolopoulos, Nikolaos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Covariance matrices</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Encoding</topic><topic>Image coding</topic><topic>Linear programming</topic><topic>optimization</topic><topic>positive definite matrices</topic><topic>Radio frequency</topic><topic>region covariance descriptors</topic><topic>Sparse coding</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivalingam, Ravishankar</creatorcontrib><creatorcontrib>Boley, Daniel</creatorcontrib><creatorcontrib>Morellas, Vassilios</creatorcontrib><creatorcontrib>Papanikolopoulos, Nikolaos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivalingam, Ravishankar</au><au>Boley, Daniel</au><au>Morellas, Vassilios</au><au>Papanikolopoulos, Nikolaos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Dictionary Learning for Positive Definite Matrices</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-11</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>4592</spage><epage>4601</epage><pages>4592-4601</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26054070</pmid><doi>10.1109/TIP.2015.2440766</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-11, Vol.24 (11), p.4592-4601 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1711536883 |
source | IEEE Xplore (Online service) |
subjects | Covariance matrices Dictionaries dictionary learning Encoding Image coding Linear programming optimization positive definite matrices Radio frequency region covariance descriptors Sparse coding Sparse matrices |
title | Tensor Dictionary Learning for Positive Definite Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Dictionary%20Learning%20for%20Positive%20Definite%20Matrices&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sivalingam,%20Ravishankar&rft.date=2015-11&rft.volume=24&rft.issue=11&rft.spage=4592&rft.epage=4601&rft.pages=4592-4601&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2440766&rft_dat=%3Cproquest_ieee_%3E1711536883%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d1096c669bc18d197ce11b8530e3e1067e779db3807b5dc69d8f3a10de96116e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711536883&rft_id=info:pmid/26054070&rft_ieee_id=7117399&rfr_iscdi=true |