Loading…

Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae

Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This...

Full description

Saved in:
Bibliographic Details
Published in:Marine biology 2015-05, Vol.162 (5), p.1087-1097
Main Authors: Rautenberger, Ralf, Huovinen, Pirjo, Gómez, Iván
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3
cites cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3
container_end_page 1097
container_issue 5
container_start_page 1087
container_title Marine biology
container_volume 162
creator Rautenberger, Ralf
Huovinen, Pirjo
Gómez, Iván
description Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry: F v / F m , soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae Desmarestia menziesii and Ascoseira mirabilis showed the highest UV tolerance at 2 °C, followed by Desmarestia anceps , and the rhodophytes Iridaea cordata , Trematocarpus antarcticus , and Palmaria decipiens . Himantothallus grandifolius (Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in D. anceps , indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for A. mirabilis ’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.
doi_str_mv 10.1007/s00227-015-2651-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1712773285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432511332</galeid><sourcerecordid>A432511332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMoOK5-AG8NXrxkTSWdpPs4LOsqLHhxxVvIpCtDLz3JmGQQv73VjOAfRnIoUvm9ovIeY69BXIMQ9l0VQkrLBWgujQZun7AN9EpysKN6yjb0rLkCI5-zF7U-CrpbqTbs622MGFrtcuzmFAr6ilNX0X_3DUvX8HDE4tupYJdT9_Cla3mhRgq4Krap-RLaHLqDL3NCKqFkv-w9vmTPol8qvvpVr9jD-9vPNx_4_ae7jzfbex607BsfDUSpZTQQBilHAaC0Ab0bovdgYh9Vr6Z-MGJnJzH2cpyM2gWMwzRAROPVFXt7nnss-dsJa3OHuQZcFp8wn6oDC9JaJQdN6Jt_0Md8Kom2c2DIjX5Qg_xN7f2Cbk4xt-LDOtRtyVBNG6qV4heoPSYyZ8kJ40ztv_jrCzydCQ9zuCiAs4AMrbVgdMcyk8s_HAi3Ru7OkTuK3K2RO0saedZUYtMeyx8f_K_oJ37Wquw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672348382</pqid></control><display><type>article</type><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><source>Springer Link</source><creator>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</creator><creatorcontrib>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</creatorcontrib><description>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry: F v / F m , soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae Desmarestia menziesii and Ascoseira mirabilis showed the highest UV tolerance at 2 °C, followed by Desmarestia anceps , and the rhodophytes Iridaea cordata , Trematocarpus antarcticus , and Palmaria decipiens . Himantothallus grandifolius (Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in D. anceps , indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for A. mirabilis ’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-015-2651-7</identifier><identifier>CODEN: MBIOAJ</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Algae ; Ascoseira mirabilis ; Biomedical and Life Sciences ; Climate change ; Coastal ecosystems ; Desmarestia anceps ; Desmarestia menziesii ; Desmarestiales ; Environmental aspects ; Freshwater &amp; Marine Ecology ; Global climate ; Health aspects ; Himantothallus grandifolius ; Iridaea cordata ; Life Sciences ; Marine &amp; Freshwater Sciences ; Marine biology ; Microbiology ; Ocean temperature ; Oceanography ; Original Paper ; Palmaria decipiens ; Phaeophyceae ; Photochemistry ; Physiology ; Seawater ; Temperature effects ; Trematocarpus ; Ultraviolet radiation ; Water temperature ; Zoology</subject><ispartof>Marine biology, 2015-05, Vol.162 (5), p.1087-1097</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</citedby><cites>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rautenberger, Ralf</creatorcontrib><creatorcontrib>Huovinen, Pirjo</creatorcontrib><creatorcontrib>Gómez, Iván</creatorcontrib><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><description>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry: F v / F m , soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae Desmarestia menziesii and Ascoseira mirabilis showed the highest UV tolerance at 2 °C, followed by Desmarestia anceps , and the rhodophytes Iridaea cordata , Trematocarpus antarcticus , and Palmaria decipiens . Himantothallus grandifolius (Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in D. anceps , indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for A. mirabilis ’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</description><subject>Adaptation</subject><subject>Algae</subject><subject>Ascoseira mirabilis</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Coastal ecosystems</subject><subject>Desmarestia anceps</subject><subject>Desmarestia menziesii</subject><subject>Desmarestiales</subject><subject>Environmental aspects</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Global climate</subject><subject>Health aspects</subject><subject>Himantothallus grandifolius</subject><subject>Iridaea cordata</subject><subject>Life Sciences</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Marine biology</subject><subject>Microbiology</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Palmaria decipiens</subject><subject>Phaeophyceae</subject><subject>Photochemistry</subject><subject>Physiology</subject><subject>Seawater</subject><subject>Temperature effects</subject><subject>Trematocarpus</subject><subject>Ultraviolet radiation</subject><subject>Water temperature</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU-LFDEQxYMoOK5-AG8NXrxkTSWdpPs4LOsqLHhxxVvIpCtDLz3JmGQQv73VjOAfRnIoUvm9ovIeY69BXIMQ9l0VQkrLBWgujQZun7AN9EpysKN6yjb0rLkCI5-zF7U-CrpbqTbs622MGFrtcuzmFAr6ilNX0X_3DUvX8HDE4tupYJdT9_Cla3mhRgq4Krap-RLaHLqDL3NCKqFkv-w9vmTPol8qvvpVr9jD-9vPNx_4_ae7jzfbex607BsfDUSpZTQQBilHAaC0Ab0bovdgYh9Vr6Z-MGJnJzH2cpyM2gWMwzRAROPVFXt7nnss-dsJa3OHuQZcFp8wn6oDC9JaJQdN6Jt_0Md8Kom2c2DIjX5Qg_xN7f2Cbk4xt-LDOtRtyVBNG6qV4heoPSYyZ8kJ40ztv_jrCzydCQ9zuCiAs4AMrbVgdMcyk8s_HAi3Ru7OkTuK3K2RO0saedZUYtMeyx8f_K_oJ37Wquw</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Rautenberger, Ralf</creator><creator>Huovinen, Pirjo</creator><creator>Gómez, Iván</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20150501</creationdate><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><author>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Algae</topic><topic>Ascoseira mirabilis</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Coastal ecosystems</topic><topic>Desmarestia anceps</topic><topic>Desmarestia menziesii</topic><topic>Desmarestiales</topic><topic>Environmental aspects</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Global climate</topic><topic>Health aspects</topic><topic>Himantothallus grandifolius</topic><topic>Iridaea cordata</topic><topic>Life Sciences</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Marine biology</topic><topic>Microbiology</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Palmaria decipiens</topic><topic>Phaeophyceae</topic><topic>Photochemistry</topic><topic>Physiology</topic><topic>Seawater</topic><topic>Temperature effects</topic><topic>Trematocarpus</topic><topic>Ultraviolet radiation</topic><topic>Water temperature</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rautenberger, Ralf</creatorcontrib><creatorcontrib>Huovinen, Pirjo</creatorcontrib><creatorcontrib>Gómez, Iván</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rautenberger, Ralf</au><au>Huovinen, Pirjo</au><au>Gómez, Iván</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>162</volume><issue>5</issue><spage>1087</spage><epage>1097</epage><pages>1087-1097</pages><issn>0025-3162</issn><eissn>1432-1793</eissn><coden>MBIOAJ</coden><abstract>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry: F v / F m , soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae Desmarestia menziesii and Ascoseira mirabilis showed the highest UV tolerance at 2 °C, followed by Desmarestia anceps , and the rhodophytes Iridaea cordata , Trematocarpus antarcticus , and Palmaria decipiens . Himantothallus grandifolius (Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in D. anceps , indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for A. mirabilis ’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00227-015-2651-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-3162
ispartof Marine biology, 2015-05, Vol.162 (5), p.1087-1097
issn 0025-3162
1432-1793
language eng
recordid cdi_proquest_miscellaneous_1712773285
source Springer Link
subjects Adaptation
Algae
Ascoseira mirabilis
Biomedical and Life Sciences
Climate change
Coastal ecosystems
Desmarestia anceps
Desmarestia menziesii
Desmarestiales
Environmental aspects
Freshwater & Marine Ecology
Global climate
Health aspects
Himantothallus grandifolius
Iridaea cordata
Life Sciences
Marine & Freshwater Sciences
Marine biology
Microbiology
Ocean temperature
Oceanography
Original Paper
Palmaria decipiens
Phaeophyceae
Photochemistry
Physiology
Seawater
Temperature effects
Trematocarpus
Ultraviolet radiation
Water temperature
Zoology
title Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20increased%20seawater%20temperature%20on%20UV%20tolerance%20of%20Antarctic%20marine%20macroalgae&rft.jtitle=Marine%20biology&rft.au=Rautenberger,%20Ralf&rft.date=2015-05-01&rft.volume=162&rft.issue=5&rft.spage=1087&rft.epage=1097&rft.pages=1087-1097&rft.issn=0025-3162&rft.eissn=1432-1793&rft.coden=MBIOAJ&rft_id=info:doi/10.1007/s00227-015-2651-7&rft_dat=%3Cgale_proqu%3EA432511332%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1672348382&rft_id=info:pmid/&rft_galeid=A432511332&rfr_iscdi=true