Loading…
Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae
Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This...
Saved in:
Published in: | Marine biology 2015-05, Vol.162 (5), p.1087-1097 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3 |
container_end_page | 1097 |
container_issue | 5 |
container_start_page | 1087 |
container_title | Marine biology |
container_volume | 162 |
creator | Rautenberger, Ralf Huovinen, Pirjo Gómez, Iván |
description | Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry:
F
v
/
F
m
, soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae
Desmarestia menziesii
and
Ascoseira mirabilis
showed the highest UV tolerance at 2 °C, followed by
Desmarestia anceps
, and the rhodophytes
Iridaea cordata
,
Trematocarpus antarcticus
, and
Palmaria decipiens
.
Himantothallus grandifolius
(Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in
D. anceps
, indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for
A. mirabilis
’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging. |
doi_str_mv | 10.1007/s00227-015-2651-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1712773285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432511332</galeid><sourcerecordid>A432511332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMoOK5-AG8NXrxkTSWdpPs4LOsqLHhxxVvIpCtDLz3JmGQQv73VjOAfRnIoUvm9ovIeY69BXIMQ9l0VQkrLBWgujQZun7AN9EpysKN6yjb0rLkCI5-zF7U-CrpbqTbs622MGFrtcuzmFAr6ilNX0X_3DUvX8HDE4tupYJdT9_Cla3mhRgq4Krap-RLaHLqDL3NCKqFkv-w9vmTPol8qvvpVr9jD-9vPNx_4_ae7jzfbex607BsfDUSpZTQQBilHAaC0Ab0bovdgYh9Vr6Z-MGJnJzH2cpyM2gWMwzRAROPVFXt7nnss-dsJa3OHuQZcFp8wn6oDC9JaJQdN6Jt_0Md8Kom2c2DIjX5Qg_xN7f2Cbk4xt-LDOtRtyVBNG6qV4heoPSYyZ8kJ40ztv_jrCzydCQ9zuCiAs4AMrbVgdMcyk8s_HAi3Ru7OkTuK3K2RO0saedZUYtMeyx8f_K_oJ37Wquw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672348382</pqid></control><display><type>article</type><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><source>Springer Link</source><creator>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</creator><creatorcontrib>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</creatorcontrib><description>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry:
F
v
/
F
m
, soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae
Desmarestia menziesii
and
Ascoseira mirabilis
showed the highest UV tolerance at 2 °C, followed by
Desmarestia anceps
, and the rhodophytes
Iridaea cordata
,
Trematocarpus antarcticus
, and
Palmaria decipiens
.
Himantothallus grandifolius
(Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in
D. anceps
, indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for
A. mirabilis
’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-015-2651-7</identifier><identifier>CODEN: MBIOAJ</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Algae ; Ascoseira mirabilis ; Biomedical and Life Sciences ; Climate change ; Coastal ecosystems ; Desmarestia anceps ; Desmarestia menziesii ; Desmarestiales ; Environmental aspects ; Freshwater & Marine Ecology ; Global climate ; Health aspects ; Himantothallus grandifolius ; Iridaea cordata ; Life Sciences ; Marine & Freshwater Sciences ; Marine biology ; Microbiology ; Ocean temperature ; Oceanography ; Original Paper ; Palmaria decipiens ; Phaeophyceae ; Photochemistry ; Physiology ; Seawater ; Temperature effects ; Trematocarpus ; Ultraviolet radiation ; Water temperature ; Zoology</subject><ispartof>Marine biology, 2015-05, Vol.162 (5), p.1087-1097</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</citedby><cites>FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rautenberger, Ralf</creatorcontrib><creatorcontrib>Huovinen, Pirjo</creatorcontrib><creatorcontrib>Gómez, Iván</creatorcontrib><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><description>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry:
F
v
/
F
m
, soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae
Desmarestia menziesii
and
Ascoseira mirabilis
showed the highest UV tolerance at 2 °C, followed by
Desmarestia anceps
, and the rhodophytes
Iridaea cordata
,
Trematocarpus antarcticus
, and
Palmaria decipiens
.
Himantothallus grandifolius
(Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in
D. anceps
, indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for
A. mirabilis
’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</description><subject>Adaptation</subject><subject>Algae</subject><subject>Ascoseira mirabilis</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Coastal ecosystems</subject><subject>Desmarestia anceps</subject><subject>Desmarestia menziesii</subject><subject>Desmarestiales</subject><subject>Environmental aspects</subject><subject>Freshwater & Marine Ecology</subject><subject>Global climate</subject><subject>Health aspects</subject><subject>Himantothallus grandifolius</subject><subject>Iridaea cordata</subject><subject>Life Sciences</subject><subject>Marine & Freshwater Sciences</subject><subject>Marine biology</subject><subject>Microbiology</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Palmaria decipiens</subject><subject>Phaeophyceae</subject><subject>Photochemistry</subject><subject>Physiology</subject><subject>Seawater</subject><subject>Temperature effects</subject><subject>Trematocarpus</subject><subject>Ultraviolet radiation</subject><subject>Water temperature</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU-LFDEQxYMoOK5-AG8NXrxkTSWdpPs4LOsqLHhxxVvIpCtDLz3JmGQQv73VjOAfRnIoUvm9ovIeY69BXIMQ9l0VQkrLBWgujQZun7AN9EpysKN6yjb0rLkCI5-zF7U-CrpbqTbs622MGFrtcuzmFAr6ilNX0X_3DUvX8HDE4tupYJdT9_Cla3mhRgq4Krap-RLaHLqDL3NCKqFkv-w9vmTPol8qvvpVr9jD-9vPNx_4_ae7jzfbex607BsfDUSpZTQQBilHAaC0Ab0bovdgYh9Vr6Z-MGJnJzH2cpyM2gWMwzRAROPVFXt7nnss-dsJa3OHuQZcFp8wn6oDC9JaJQdN6Jt_0Md8Kom2c2DIjX5Qg_xN7f2Cbk4xt-LDOtRtyVBNG6qV4heoPSYyZ8kJ40ztv_jrCzydCQ9zuCiAs4AMrbVgdMcyk8s_HAi3Ru7OkTuK3K2RO0saedZUYtMeyx8f_K_oJ37Wquw</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Rautenberger, Ralf</creator><creator>Huovinen, Pirjo</creator><creator>Gómez, Iván</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20150501</creationdate><title>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</title><author>Rautenberger, Ralf ; Huovinen, Pirjo ; Gómez, Iván</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Algae</topic><topic>Ascoseira mirabilis</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Coastal ecosystems</topic><topic>Desmarestia anceps</topic><topic>Desmarestia menziesii</topic><topic>Desmarestiales</topic><topic>Environmental aspects</topic><topic>Freshwater & Marine Ecology</topic><topic>Global climate</topic><topic>Health aspects</topic><topic>Himantothallus grandifolius</topic><topic>Iridaea cordata</topic><topic>Life Sciences</topic><topic>Marine & Freshwater Sciences</topic><topic>Marine biology</topic><topic>Microbiology</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Palmaria decipiens</topic><topic>Phaeophyceae</topic><topic>Photochemistry</topic><topic>Physiology</topic><topic>Seawater</topic><topic>Temperature effects</topic><topic>Trematocarpus</topic><topic>Ultraviolet radiation</topic><topic>Water temperature</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rautenberger, Ralf</creatorcontrib><creatorcontrib>Huovinen, Pirjo</creatorcontrib><creatorcontrib>Gómez, Iván</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rautenberger, Ralf</au><au>Huovinen, Pirjo</au><au>Gómez, Iván</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>162</volume><issue>5</issue><spage>1087</spage><epage>1097</epage><pages>1087-1097</pages><issn>0025-3162</issn><eissn>1432-1793</eissn><coden>MBIOAJ</coden><abstract>Cold-adapted Antarctic marine macroalgae have different physiological strategies to tolerate the ultraviolet (UV) radiation at low seawater temperatures around 0 °C. The warming of Antarctica’s coasts driven by global climate change may alter the physiology such to influence their UV tolerance. This study examined the interactive effects of different seawater temperatures (2 vs. 7 °C) and UV radiation on the physiological performance (primary photochemistry:
F
v
/
F
m
, soluble and insoluble phlorotannins, radical scavenging capacity) of seven macroalgae, which are dominant in Antarctic coastal ecosystems. Four brown and three red macroalgae, collected from Fildes Bay (King George Island, South Shetland Islands) in January/February, were exposed to 6 h of UV/temperature stress, followed by a 16-h recovery. The brown macroalgae
Desmarestia menziesii
and
Ascoseira mirabilis
showed the highest UV tolerance at 2 °C, followed by
Desmarestia anceps
, and the rhodophytes
Iridaea cordata
,
Trematocarpus antarcticus
, and
Palmaria decipiens
.
Himantothallus grandifolius
(Phaeophyceae) was sensitive to UV radiation at 2 °C. At 7 °C, UV tolerance was improved in UV-sensitive macroalgae probably due to a more efficient damage repair of the photosynthetic apparatus. Temperature, however, did not modulate UV tolerance in
D. anceps
, indicating an UV-sensitive repair process. Constitutively, high contents of soluble and insoluble phlorotannins and radical scavenging capacities remained unchanged in endemic Desmarestiales. UV induction of soluble phlorotannins along with an increased radical scavenging capacity can be responsible for
A. mirabilis
’ high UV tolerance. This study suggests that UV tolerance in macroalgae, which are sensitive to UV radiation at 2 °C, is modulated by temperature. Enhanced UV tolerance at 7 °C can be apparently ascribed to the stimulation of damage repair of the photosynthetic apparatus rather than to an enhanced UV screening or radical scavenging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00227-015-2651-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-3162 |
ispartof | Marine biology, 2015-05, Vol.162 (5), p.1087-1097 |
issn | 0025-3162 1432-1793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1712773285 |
source | Springer Link |
subjects | Adaptation Algae Ascoseira mirabilis Biomedical and Life Sciences Climate change Coastal ecosystems Desmarestia anceps Desmarestia menziesii Desmarestiales Environmental aspects Freshwater & Marine Ecology Global climate Health aspects Himantothallus grandifolius Iridaea cordata Life Sciences Marine & Freshwater Sciences Marine biology Microbiology Ocean temperature Oceanography Original Paper Palmaria decipiens Phaeophyceae Photochemistry Physiology Seawater Temperature effects Trematocarpus Ultraviolet radiation Water temperature Zoology |
title | Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20increased%20seawater%20temperature%20on%20UV%20tolerance%20of%20Antarctic%20marine%20macroalgae&rft.jtitle=Marine%20biology&rft.au=Rautenberger,%20Ralf&rft.date=2015-05-01&rft.volume=162&rft.issue=5&rft.spage=1087&rft.epage=1097&rft.pages=1087-1097&rft.issn=0025-3162&rft.eissn=1432-1793&rft.coden=MBIOAJ&rft_id=info:doi/10.1007/s00227-015-2651-7&rft_dat=%3Cgale_proqu%3EA432511332%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-961f252f61c822901135615b8faa16f4f343d4860b7d09429d63bcef8d81fe6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1672348382&rft_id=info:pmid/&rft_galeid=A432511332&rfr_iscdi=true |