Loading…

Spatial distribution of Auger electrons emitted from internalised radionuclides in cancer cells: the photoresist autoradiography (PAR) method

Microdosimetric evaluation of Auger electron-emitting radionuclides involves a detailed evaluation of energy deposition at a nanometre scale. To perform Monte Carlo modelling of such energy deposition, accurate information regarding the spatial distribution of the radionuclide is required. A recent...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry 2015-09, Vol.166 (1-4), p.228-232
Main Authors: Royle, G, Myhra, S, Chakalova, R, Vallis, K A, Falzone, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microdosimetric evaluation of Auger electron-emitting radionuclides involves a detailed evaluation of energy deposition at a nanometre scale. To perform Monte Carlo modelling of such energy deposition, accurate information regarding the spatial distribution of the radionuclide is required. A recent addition to the methods for determining the spatial distribution of cellular internalised radionuclides is based on detection in a polymer photoresist (e.g. polymethyl methacralate), followed by atomic force microscopy analysis of the resultant 3D pattern. In comparison with present practice, the method offers greater spatial resolution and improved quantification. The volume of the pattern is proportional to the total dose, thereby permitting assessment of variability of accumulated activity, while the variation in depth across the pattern reflects the lateral spatial distribution in the local fluence per unit area. An added advantage is the similarity in response to ionising radiation of an organic polymer compared to that of biological material. A pattern in the resist from radiation emitted by a radionuclide treated cell gives additional spatial information about the energy deposited in the resist.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncv162