Loading…

Anisotropic superfluidity of (4)He on a C36 fullerene molecule

We have performed path-integral Monte Carlo calculations to study the adsorption of (4)He atoms on two different C36 isomers with the D6h and the D2d symmetries. The radial (4)He density distributions reveal layer-by-layer growth with the first layer being located at a distance of ∼5.5 Å from the C3...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-09, Vol.143 (10), p.104311-104311
Main Authors: Park, Sungjin, Kim, Byeongjoon, Kwon, Yongkyung
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have performed path-integral Monte Carlo calculations to study the adsorption of (4)He atoms on two different C36 isomers with the D6h and the D2d symmetries. The radial (4)He density distributions reveal layer-by-layer growth with the first layer being located at a distance of ∼5.5 Å from the C36 molecular center and the second layer at ∼8.3 Å. From the angular density profiles of (4)He, we find different quantum states as the number of (4)He adatoms N varies. For N = 20, we observe commensurate solid structures on both D6h and D2d isomers, where each of 8 hexagon and 12 pentagon centers of the fullerene surfaces is occupied by a single (4)He atom. The second-layer promotion starts beyond N = 38 on both isomers, where a compressible incommensurate structure is observed on the D6h isomer and another commensurate structure on D2d. Between N = 20 and N = 38, the (4)He monolayer on D6h shows several distinct rings of delocalized (4)He atoms along with strongly anisotropic superfluid responses at low temperatures, while isotropic but weak superfluid responses are observed in the (4)He layer on D2d.
ISSN:1089-7690
DOI:10.1063/1.4930857