Loading…
CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism
DFT+U calculations of CO oxidation by Au12 nanoclusters supported on a stepped-CeO2(111) surface show that lattice oxygen at the step edge oxidizes CO bound to Au NCs by the Mars–van Krevelen (M-vK) mechanism. We found that CO2 desorption determines the rate of CO oxidation, and the vacancy formatio...
Saved in:
Published in: | The journal of physical chemistry letters 2013-01, Vol.4 (1), p.216-221 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DFT+U calculations of CO oxidation by Au12 nanoclusters supported on a stepped-CeO2(111) surface show that lattice oxygen at the step edge oxidizes CO bound to Au NCs by the Mars–van Krevelen (M-vK) mechanism. We found that CO2 desorption determines the rate of CO oxidation, and the vacancy formation energy is a reactivity descriptor for CO oxidation. Our results suggest that the M-vK mechanism contributes significantly to CO oxidation activity at Au particles supported on the nano- or meso-structured CeO2 found in industrial catalysts. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz301778b |