Loading…

Closed-Loop Optogenetic Brain Interface

This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which el...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2015-10, Vol.62 (10), p.2327-2337
Main Authors: Pashaie, Ramin, Baumgartner, Ryan, Richner, Thomas J., Brodnick, Sarah K., Azimipour, Mehdi, Eliceiri, Kevin W., Williams, Justin C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3
cites cdi_FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3
container_end_page 2337
container_issue 10
container_start_page 2327
container_title IEEE transactions on biomedical engineering
container_volume 62
creator Pashaie, Ramin
Baumgartner, Ryan
Richner, Thomas J.
Brodnick, Sarah K.
Azimipour, Mehdi
Eliceiri, Kevin W.
Williams, Justin C.
description This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which electrode arrays are embedded within an optically transparent biocompatible substrate that provides optical access to the brain tissue during electrophysiology recording. An optical setup was designed capable of projecting arbitrary patterns of light for optogenetic stimulation and performing fluorescence microscopy through the implant. For realization of a closed-loop system using this platform, the feedback can be taken from electrophysiology data or fluorescence imaging. In the closed-loop systems discussed in this paper, the feedback signal was taken from the micro-ECoG. In these algorithms, the electrophysiology data are continuously transferred to a computer and compared with some predefined spatial-temporal patterns of neural activity. The computer which processes the data also readjusts the duration and distribution of optogenetic stimulating pulses to minimize the difference between the recorded activity and the predefined set points so that after a limited period of transient response the recorded activity follows the set points. Details of the system design and implementation of typical closed-loop paradigms are discussed in this paper.
doi_str_mv 10.1109/TBME.2015.2436817
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1715915455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7112125</ieee_id><sourcerecordid>1715915455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABGk4EEvqTv7kewebalaqPRSz8tmM5GUNKm7ycF_75bWHjwNwzzvy_AQcgt0AkD183r6MZ8wCnLCBE8VZGdkCFKqhEkO52RIKahEMy0G5CqETVyFEuklGbCUAqgsG5LHWd0GLJJl2-7Gq13XfmGDXeXGU2-rZrxoOvSldXhNLkpbB7w5zhH5fJ2vZ-_JcvW2mL0sE8eF7pIUaS4dK61MhaU5Z7IsrASLGh0yJR1XMrcghaCMZXnGURVQCscYtVjqgo_I06F359vvHkNntlVwWNe2wbYPBjKQOualjOjDP3TT9r6J30WK6UhSziIFB8r5NgSPpdn5amv9jwFq9hbN3qLZWzRHizFzf2zu8y0Wp8SftgjcHYAKEU_nDIBBVP8L7AlzfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729171032</pqid></control><display><type>article</type><title>Closed-Loop Optogenetic Brain Interface</title><source>IEEE Xplore All Conference Series</source><creator>Pashaie, Ramin ; Baumgartner, Ryan ; Richner, Thomas J. ; Brodnick, Sarah K. ; Azimipour, Mehdi ; Eliceiri, Kevin W. ; Williams, Justin C.</creator><creatorcontrib>Pashaie, Ramin ; Baumgartner, Ryan ; Richner, Thomas J. ; Brodnick, Sarah K. ; Azimipour, Mehdi ; Eliceiri, Kevin W. ; Williams, Justin C.</creatorcontrib><description>This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which electrode arrays are embedded within an optically transparent biocompatible substrate that provides optical access to the brain tissue during electrophysiology recording. An optical setup was designed capable of projecting arbitrary patterns of light for optogenetic stimulation and performing fluorescence microscopy through the implant. For realization of a closed-loop system using this platform, the feedback can be taken from electrophysiology data or fluorescence imaging. In the closed-loop systems discussed in this paper, the feedback signal was taken from the micro-ECoG. In these algorithms, the electrophysiology data are continuously transferred to a computer and compared with some predefined spatial-temporal patterns of neural activity. The computer which processes the data also readjusts the duration and distribution of optogenetic stimulating pulses to minimize the difference between the recorded activity and the predefined set points so that after a limited period of transient response the recorded activity follows the set points. Details of the system design and implementation of typical closed-loop paradigms are discussed in this paper.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2015.2436817</identifier><identifier>PMID: 26011877</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Biomedical optical imaging ; Brain - physiology ; Brain - surgery ; Brain Interface ; Brain-Computer Interfaces ; Building permits ; Cerebrovascular Circulation - physiology ; Closed-Loop ; Electrocorticography - instrumentation ; Electrocorticography - methods ; Electrodes ; Equipment Design ; Fluorescence Imaging ; Hemodynamic Signals ; Hemodynamics - physiology ; Laser beams ; Lenses ; Mice ; Mice, Transgenic ; Microscopy ; Optical imaging ; Optical Imaging - methods ; Optogenetics ; Optogenetics - instrumentation ; Optogenetics - methods ; Signal Processing, Computer-Assisted ; Spatial Light Modulator ; Stimulated emission</subject><ispartof>IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2327-2337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3</citedby><cites>FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7112125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54533,54774,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7112125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26011877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pashaie, Ramin</creatorcontrib><creatorcontrib>Baumgartner, Ryan</creatorcontrib><creatorcontrib>Richner, Thomas J.</creatorcontrib><creatorcontrib>Brodnick, Sarah K.</creatorcontrib><creatorcontrib>Azimipour, Mehdi</creatorcontrib><creatorcontrib>Eliceiri, Kevin W.</creatorcontrib><creatorcontrib>Williams, Justin C.</creatorcontrib><title>Closed-Loop Optogenetic Brain Interface</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which electrode arrays are embedded within an optically transparent biocompatible substrate that provides optical access to the brain tissue during electrophysiology recording. An optical setup was designed capable of projecting arbitrary patterns of light for optogenetic stimulation and performing fluorescence microscopy through the implant. For realization of a closed-loop system using this platform, the feedback can be taken from electrophysiology data or fluorescence imaging. In the closed-loop systems discussed in this paper, the feedback signal was taken from the micro-ECoG. In these algorithms, the electrophysiology data are continuously transferred to a computer and compared with some predefined spatial-temporal patterns of neural activity. The computer which processes the data also readjusts the duration and distribution of optogenetic stimulating pulses to minimize the difference between the recorded activity and the predefined set points so that after a limited period of transient response the recorded activity follows the set points. Details of the system design and implementation of typical closed-loop paradigms are discussed in this paper.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biomedical optical imaging</subject><subject>Brain - physiology</subject><subject>Brain - surgery</subject><subject>Brain Interface</subject><subject>Brain-Computer Interfaces</subject><subject>Building permits</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Closed-Loop</subject><subject>Electrocorticography - instrumentation</subject><subject>Electrocorticography - methods</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Fluorescence Imaging</subject><subject>Hemodynamic Signals</subject><subject>Hemodynamics - physiology</subject><subject>Laser beams</subject><subject>Lenses</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Optical imaging</subject><subject>Optical Imaging - methods</subject><subject>Optogenetics</subject><subject>Optogenetics - instrumentation</subject><subject>Optogenetics - methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spatial Light Modulator</subject><subject>Stimulated emission</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-ABGk4EEvqTv7kewebalaqPRSz8tmM5GUNKm7ycF_75bWHjwNwzzvy_AQcgt0AkD183r6MZ8wCnLCBE8VZGdkCFKqhEkO52RIKahEMy0G5CqETVyFEuklGbCUAqgsG5LHWd0GLJJl2-7Gq13XfmGDXeXGU2-rZrxoOvSldXhNLkpbB7w5zhH5fJ2vZ-_JcvW2mL0sE8eF7pIUaS4dK61MhaU5Z7IsrASLGh0yJR1XMrcghaCMZXnGURVQCscYtVjqgo_I06F359vvHkNntlVwWNe2wbYPBjKQOualjOjDP3TT9r6J30WK6UhSziIFB8r5NgSPpdn5amv9jwFq9hbN3qLZWzRHizFzf2zu8y0Wp8SftgjcHYAKEU_nDIBBVP8L7AlzfA</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Pashaie, Ramin</creator><creator>Baumgartner, Ryan</creator><creator>Richner, Thomas J.</creator><creator>Brodnick, Sarah K.</creator><creator>Azimipour, Mehdi</creator><creator>Eliceiri, Kevin W.</creator><creator>Williams, Justin C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Closed-Loop Optogenetic Brain Interface</title><author>Pashaie, Ramin ; Baumgartner, Ryan ; Richner, Thomas J. ; Brodnick, Sarah K. ; Azimipour, Mehdi ; Eliceiri, Kevin W. ; Williams, Justin C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biomedical optical imaging</topic><topic>Brain - physiology</topic><topic>Brain - surgery</topic><topic>Brain Interface</topic><topic>Brain-Computer Interfaces</topic><topic>Building permits</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Closed-Loop</topic><topic>Electrocorticography - instrumentation</topic><topic>Electrocorticography - methods</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Fluorescence Imaging</topic><topic>Hemodynamic Signals</topic><topic>Hemodynamics - physiology</topic><topic>Laser beams</topic><topic>Lenses</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Optical imaging</topic><topic>Optical Imaging - methods</topic><topic>Optogenetics</topic><topic>Optogenetics - instrumentation</topic><topic>Optogenetics - methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spatial Light Modulator</topic><topic>Stimulated emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pashaie, Ramin</creatorcontrib><creatorcontrib>Baumgartner, Ryan</creatorcontrib><creatorcontrib>Richner, Thomas J.</creatorcontrib><creatorcontrib>Brodnick, Sarah K.</creatorcontrib><creatorcontrib>Azimipour, Mehdi</creatorcontrib><creatorcontrib>Eliceiri, Kevin W.</creatorcontrib><creatorcontrib>Williams, Justin C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pashaie, Ramin</au><au>Baumgartner, Ryan</au><au>Richner, Thomas J.</au><au>Brodnick, Sarah K.</au><au>Azimipour, Mehdi</au><au>Eliceiri, Kevin W.</au><au>Williams, Justin C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop Optogenetic Brain Interface</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2015-10</date><risdate>2015</risdate><volume>62</volume><issue>10</issue><spage>2327</spage><epage>2337</epage><pages>2327-2337</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>This paper presents a new approach for implementation of closed-loop brain-machine interface algorithms by combining optogenetic neural stimulation with electrocorticography and fluorescence microscopy. We used a new generation of microfabricated electrocorticography (micro-ECoG) devices in which electrode arrays are embedded within an optically transparent biocompatible substrate that provides optical access to the brain tissue during electrophysiology recording. An optical setup was designed capable of projecting arbitrary patterns of light for optogenetic stimulation and performing fluorescence microscopy through the implant. For realization of a closed-loop system using this platform, the feedback can be taken from electrophysiology data or fluorescence imaging. In the closed-loop systems discussed in this paper, the feedback signal was taken from the micro-ECoG. In these algorithms, the electrophysiology data are continuously transferred to a computer and compared with some predefined spatial-temporal patterns of neural activity. The computer which processes the data also readjusts the duration and distribution of optogenetic stimulating pulses to minimize the difference between the recorded activity and the predefined set points so that after a limited period of transient response the recorded activity follows the set points. Details of the system design and implementation of typical closed-loop paradigms are discussed in this paper.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26011877</pmid><doi>10.1109/TBME.2015.2436817</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2327-2337
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_1715915455
source IEEE Xplore All Conference Series
subjects Algorithms
Animals
Biomedical optical imaging
Brain - physiology
Brain - surgery
Brain Interface
Brain-Computer Interfaces
Building permits
Cerebrovascular Circulation - physiology
Closed-Loop
Electrocorticography - instrumentation
Electrocorticography - methods
Electrodes
Equipment Design
Fluorescence Imaging
Hemodynamic Signals
Hemodynamics - physiology
Laser beams
Lenses
Mice
Mice, Transgenic
Microscopy
Optical imaging
Optical Imaging - methods
Optogenetics
Optogenetics - instrumentation
Optogenetics - methods
Signal Processing, Computer-Assisted
Spatial Light Modulator
Stimulated emission
title Closed-Loop Optogenetic Brain Interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop%20Optogenetic%20Brain%20Interface&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Pashaie,%20Ramin&rft.date=2015-10&rft.volume=62&rft.issue=10&rft.spage=2327&rft.epage=2337&rft.pages=2327-2337&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2015.2436817&rft_dat=%3Cproquest_CHZPO%3E1715915455%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6e0b5c2fa564a0b325fda51ae9ece285c385ba15440227b73e8d1f4c220aef9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1729171032&rft_id=info:pmid/26011877&rft_ieee_id=7112125&rfr_iscdi=true