Loading…

Memory Engram Cells Have Come of Age

The idea that memory is stored in the brain as physical alterations goes back at least as far as Plato, but further conceptualization of this idea had to wait until the 20th century when two guiding theories were presented: the “engram theory” of Richard Semon and Donald Hebb’s “synaptic plasticity...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2015-09, Vol.87 (5), p.918-931
Main Authors: Tonegawa, Susumu, Liu, Xu, Ramirez, Steve, Redondo, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The idea that memory is stored in the brain as physical alterations goes back at least as far as Plato, but further conceptualization of this idea had to wait until the 20th century when two guiding theories were presented: the “engram theory” of Richard Semon and Donald Hebb’s “synaptic plasticity theory.” While a large number of studies have been conducted since, each supporting some aspect of each of these theories, until recently integrative evidence for the existence of engram cells and circuits as defined by the theories was lacking. In the past few years, the combination of transgenics, optogenetics, and other technologies has allowed neuroscientists to begin identifying memory engram cells by detecting specific populations of cells activated during specific learning epochs and by engineering them not only to evoke recall of the original memory, but also to alter the content of the memory. Tonegawa et al. review how recent technological advances have allowed neuroscientists to begin to identify and to engineer specific memory engram cells and their circuits. They discuss their perspective on the neurobiology of learning and memory.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2015.08.002