Loading…

In-vivo pharmacology of Trace-Amine Associated Receptor 1

Trace-amines (TAs) are endogenous amines that are implicated in several physiological processes including modulation of aminergic neurotransmission. These compounds exert their effect by activating a class of G protein-coupled receptors termed Trace-Amine Associated Receptors (TAARs), where TAAR1 is...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2015-09, Vol.763 (Pt B), p.136-142
Main Authors: Lam, Vincent M., Espinoza, Stefano, Gerasimov, Andrey S., Gainetdinov, Raul R., Salahpour, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trace-amines (TAs) are endogenous amines that are implicated in several physiological processes including modulation of aminergic neurotransmission. These compounds exert their effect by activating a class of G protein-coupled receptors termed Trace-Amine Associated Receptors (TAARs), where TAAR1 is the only human receptor that has been shown to bind endogenous TAs. Most of the studies have focused on studying the role of TAAR1 on modulation of the dopamine transmission. These studies indicate that TAAR1 is a negative regulator of dopamine transmission making TAAR1 a novel target for neuropsychiatric disorders that arises from dopamine dysfunction such as schizophrenia. This review discusses the unique pharmacology of TAAR1 with the major focus on the physiological role of TAAR1 and its modulation of dopamine transmission.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2015.06.026