Loading…
Automatic image analysis of plankton: future perspectives
In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive ma...
Saved in:
Published in: | Marine ecology. Progress series (Halstenbek) 2006-04, Vol.312, p.297-309 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 309 |
container_issue | |
container_start_page | 297 |
container_title | Marine ecology. Progress series (Halstenbek) |
container_volume | 312 |
creator | Culverhouse, Phil F. Williams, Robert Benfield, Mark Flood, Per R. Sell, Anne F. Mazzocchi, Maria Grazia Buttino, Isabella Sieracki, Mike |
description | In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims. |
doi_str_mv | 10.3354/meps312297 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17184441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24870080</jstor_id><sourcerecordid>24870080</sourcerecordid><originalsourceid>FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3</originalsourceid><addsrcrecordid>eNo9zztLxEAUBeBBFIyrjb2QQu2i874z5bKsD1iw0TrcJDOSNcnEzKTYf29gF6tTnI_LPYTcMvokhJLPvRujYJxbOCMZ00wXTFl7TjLKgBVGC3pJrmLcU8q0BJ2R-_WcQo-prfO2x2-X44DdIbYxDz4fOxx-UhiuyYXHLrqbU67I18v2c_NW7D5e3zfrXbHnwqTCMq_Raem9APQNVKZWTjvnjQbpFFfAK1WBQmEaqmmjlGVUglLcgLXeiRV5PN4dp_A7u5jKvo2165Y3XJhjuWwwUkq2wIcTxFhj5ycc6jaW47RsmA6LA8M1t4u7O7p9TGH677k0QKmh4g_-GFgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17184441</pqid></control><display><type>article</type><title>Automatic image analysis of plankton: future perspectives</title><source>JSTOR Archival Journals</source><creator>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</creator><creatorcontrib>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</creatorcontrib><description>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps312297</identifier><language>eng</language><publisher>Oldendorf: Inter-Research</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; AS WE SEE IT ; Biological and medical sciences ; Biological taxonomies ; Fundamental and applied biological sciences. Psychology ; Image analysis ; Image databases ; Imaging ; Marine ; Microscopy ; Oceans ; Plankton ; Sea water ecosystems ; Synecology ; Zooplankton</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2006-04, Vol.312, p.297-309</ispartof><rights>Inter-Research 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24870080$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24870080$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17782629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Culverhouse, Phil F.</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Benfield, Mark</creatorcontrib><creatorcontrib>Flood, Per R.</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Mazzocchi, Maria Grazia</creatorcontrib><creatorcontrib>Buttino, Isabella</creatorcontrib><creatorcontrib>Sieracki, Mike</creatorcontrib><title>Automatic image analysis of plankton: future perspectives</title><title>Marine ecology. Progress series (Halstenbek)</title><description>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>AS WE SEE IT</subject><subject>Biological and medical sciences</subject><subject>Biological taxonomies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Image analysis</subject><subject>Image databases</subject><subject>Imaging</subject><subject>Marine</subject><subject>Microscopy</subject><subject>Oceans</subject><subject>Plankton</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>Zooplankton</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9zztLxEAUBeBBFIyrjb2QQu2i874z5bKsD1iw0TrcJDOSNcnEzKTYf29gF6tTnI_LPYTcMvokhJLPvRujYJxbOCMZ00wXTFl7TjLKgBVGC3pJrmLcU8q0BJ2R-_WcQo-prfO2x2-X44DdIbYxDz4fOxx-UhiuyYXHLrqbU67I18v2c_NW7D5e3zfrXbHnwqTCMq_Raem9APQNVKZWTjvnjQbpFFfAK1WBQmEaqmmjlGVUglLcgLXeiRV5PN4dp_A7u5jKvo2165Y3XJhjuWwwUkq2wIcTxFhj5ycc6jaW47RsmA6LA8M1t4u7O7p9TGH677k0QKmh4g_-GFgY</recordid><startdate>20060424</startdate><enddate>20060424</enddate><creator>Culverhouse, Phil F.</creator><creator>Williams, Robert</creator><creator>Benfield, Mark</creator><creator>Flood, Per R.</creator><creator>Sell, Anne F.</creator><creator>Mazzocchi, Maria Grazia</creator><creator>Buttino, Isabella</creator><creator>Sieracki, Mike</creator><general>Inter-Research</general><scope>IQODW</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20060424</creationdate><title>Automatic image analysis of plankton</title><author>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>AS WE SEE IT</topic><topic>Biological and medical sciences</topic><topic>Biological taxonomies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Image analysis</topic><topic>Image databases</topic><topic>Imaging</topic><topic>Marine</topic><topic>Microscopy</topic><topic>Oceans</topic><topic>Plankton</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culverhouse, Phil F.</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Benfield, Mark</creatorcontrib><creatorcontrib>Flood, Per R.</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Mazzocchi, Maria Grazia</creatorcontrib><creatorcontrib>Buttino, Isabella</creatorcontrib><creatorcontrib>Sieracki, Mike</creatorcontrib><collection>Pascal-Francis</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culverhouse, Phil F.</au><au>Williams, Robert</au><au>Benfield, Mark</au><au>Flood, Per R.</au><au>Sell, Anne F.</au><au>Mazzocchi, Maria Grazia</au><au>Buttino, Isabella</au><au>Sieracki, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic image analysis of plankton: future perspectives</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2006-04-24</date><risdate>2006</risdate><volume>312</volume><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</abstract><cop>Oldendorf</cop><pub>Inter-Research</pub><doi>10.3354/meps312297</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-8630 |
ispartof | Marine ecology. Progress series (Halstenbek), 2006-04, Vol.312, p.297-309 |
issn | 0171-8630 1616-1599 |
language | eng |
recordid | cdi_proquest_miscellaneous_17184441 |
source | JSTOR Archival Journals |
subjects | Animal and plant ecology Animal, plant and microbial ecology AS WE SEE IT Biological and medical sciences Biological taxonomies Fundamental and applied biological sciences. Psychology Image analysis Image databases Imaging Marine Microscopy Oceans Plankton Sea water ecosystems Synecology Zooplankton |
title | Automatic image analysis of plankton: future perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20image%20analysis%20of%20plankton:%20future%20perspectives&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Culverhouse,%20Phil%20F.&rft.date=2006-04-24&rft.volume=312&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps312297&rft_dat=%3Cjstor_proqu%3E24870080%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17184441&rft_id=info:pmid/&rft_jstor_id=24870080&rfr_iscdi=true |