Loading…

Automatic image analysis of plankton: future perspectives

In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive ma...

Full description

Saved in:
Bibliographic Details
Published in:Marine ecology. Progress series (Halstenbek) 2006-04, Vol.312, p.297-309
Main Authors: Culverhouse, Phil F., Williams, Robert, Benfield, Mark, Flood, Per R., Sell, Anne F., Mazzocchi, Maria Grazia, Buttino, Isabella, Sieracki, Mike
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 309
container_issue
container_start_page 297
container_title Marine ecology. Progress series (Halstenbek)
container_volume 312
creator Culverhouse, Phil F.
Williams, Robert
Benfield, Mark
Flood, Per R.
Sell, Anne F.
Mazzocchi, Maria Grazia
Buttino, Isabella
Sieracki, Mike
description In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.
doi_str_mv 10.3354/meps312297
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17184441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24870080</jstor_id><sourcerecordid>24870080</sourcerecordid><originalsourceid>FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3</originalsourceid><addsrcrecordid>eNo9zztLxEAUBeBBFIyrjb2QQu2i874z5bKsD1iw0TrcJDOSNcnEzKTYf29gF6tTnI_LPYTcMvokhJLPvRujYJxbOCMZ00wXTFl7TjLKgBVGC3pJrmLcU8q0BJ2R-_WcQo-prfO2x2-X44DdIbYxDz4fOxx-UhiuyYXHLrqbU67I18v2c_NW7D5e3zfrXbHnwqTCMq_Raem9APQNVKZWTjvnjQbpFFfAK1WBQmEaqmmjlGVUglLcgLXeiRV5PN4dp_A7u5jKvo2165Y3XJhjuWwwUkq2wIcTxFhj5ycc6jaW47RsmA6LA8M1t4u7O7p9TGH677k0QKmh4g_-GFgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17184441</pqid></control><display><type>article</type><title>Automatic image analysis of plankton: future perspectives</title><source>JSTOR Archival Journals</source><creator>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</creator><creatorcontrib>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</creatorcontrib><description>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps312297</identifier><language>eng</language><publisher>Oldendorf: Inter-Research</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; AS WE SEE IT ; Biological and medical sciences ; Biological taxonomies ; Fundamental and applied biological sciences. Psychology ; Image analysis ; Image databases ; Imaging ; Marine ; Microscopy ; Oceans ; Plankton ; Sea water ecosystems ; Synecology ; Zooplankton</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2006-04, Vol.312, p.297-309</ispartof><rights>Inter-Research 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24870080$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24870080$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17782629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Culverhouse, Phil F.</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Benfield, Mark</creatorcontrib><creatorcontrib>Flood, Per R.</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Mazzocchi, Maria Grazia</creatorcontrib><creatorcontrib>Buttino, Isabella</creatorcontrib><creatorcontrib>Sieracki, Mike</creatorcontrib><title>Automatic image analysis of plankton: future perspectives</title><title>Marine ecology. Progress series (Halstenbek)</title><description>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>AS WE SEE IT</subject><subject>Biological and medical sciences</subject><subject>Biological taxonomies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Image analysis</subject><subject>Image databases</subject><subject>Imaging</subject><subject>Marine</subject><subject>Microscopy</subject><subject>Oceans</subject><subject>Plankton</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>Zooplankton</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9zztLxEAUBeBBFIyrjb2QQu2i874z5bKsD1iw0TrcJDOSNcnEzKTYf29gF6tTnI_LPYTcMvokhJLPvRujYJxbOCMZ00wXTFl7TjLKgBVGC3pJrmLcU8q0BJ2R-_WcQo-prfO2x2-X44DdIbYxDz4fOxx-UhiuyYXHLrqbU67I18v2c_NW7D5e3zfrXbHnwqTCMq_Raem9APQNVKZWTjvnjQbpFFfAK1WBQmEaqmmjlGVUglLcgLXeiRV5PN4dp_A7u5jKvo2165Y3XJhjuWwwUkq2wIcTxFhj5ycc6jaW47RsmA6LA8M1t4u7O7p9TGH677k0QKmh4g_-GFgY</recordid><startdate>20060424</startdate><enddate>20060424</enddate><creator>Culverhouse, Phil F.</creator><creator>Williams, Robert</creator><creator>Benfield, Mark</creator><creator>Flood, Per R.</creator><creator>Sell, Anne F.</creator><creator>Mazzocchi, Maria Grazia</creator><creator>Buttino, Isabella</creator><creator>Sieracki, Mike</creator><general>Inter-Research</general><scope>IQODW</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20060424</creationdate><title>Automatic image analysis of plankton</title><author>Culverhouse, Phil F. ; Williams, Robert ; Benfield, Mark ; Flood, Per R. ; Sell, Anne F. ; Mazzocchi, Maria Grazia ; Buttino, Isabella ; Sieracki, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>AS WE SEE IT</topic><topic>Biological and medical sciences</topic><topic>Biological taxonomies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Image analysis</topic><topic>Image databases</topic><topic>Imaging</topic><topic>Marine</topic><topic>Microscopy</topic><topic>Oceans</topic><topic>Plankton</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culverhouse, Phil F.</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Benfield, Mark</creatorcontrib><creatorcontrib>Flood, Per R.</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Mazzocchi, Maria Grazia</creatorcontrib><creatorcontrib>Buttino, Isabella</creatorcontrib><creatorcontrib>Sieracki, Mike</creatorcontrib><collection>Pascal-Francis</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culverhouse, Phil F.</au><au>Williams, Robert</au><au>Benfield, Mark</au><au>Flood, Per R.</au><au>Sell, Anne F.</au><au>Mazzocchi, Maria Grazia</au><au>Buttino, Isabella</au><au>Sieracki, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic image analysis of plankton: future perspectives</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2006-04-24</date><risdate>2006</risdate><volume>312</volume><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected andin situspecimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims.</abstract><cop>Oldendorf</cop><pub>Inter-Research</pub><doi>10.3354/meps312297</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-8630
ispartof Marine ecology. Progress series (Halstenbek), 2006-04, Vol.312, p.297-309
issn 0171-8630
1616-1599
language eng
recordid cdi_proquest_miscellaneous_17184441
source JSTOR Archival Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
AS WE SEE IT
Biological and medical sciences
Biological taxonomies
Fundamental and applied biological sciences. Psychology
Image analysis
Image databases
Imaging
Marine
Microscopy
Oceans
Plankton
Sea water ecosystems
Synecology
Zooplankton
title Automatic image analysis of plankton: future perspectives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20image%20analysis%20of%20plankton:%20future%20perspectives&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Culverhouse,%20Phil%20F.&rft.date=2006-04-24&rft.volume=312&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps312297&rft_dat=%3Cjstor_proqu%3E24870080%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j238t-91f6ae64ff37afd7b8c5e6eef8674e52572b5b75a38d060d55910475528799fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17184441&rft_id=info:pmid/&rft_jstor_id=24870080&rfr_iscdi=true