Loading…

Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization

ABSTRACT The manner in which strains are passed down the hierarchical length scales of tendons dictates how cells within the collagen network regulate the tissue response to loading. How tendons deform in different hierarchical levels under shear and compression is unknown. The aims of this study we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of orthopaedic research 2015-11, Vol.33 (11), p.1704-1712
Main Authors: Fang, Fei, Lake, Spencer P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The manner in which strains are passed down the hierarchical length scales of tendons dictates how cells within the collagen network regulate the tissue response to loading. How tendons deform in different hierarchical levels under shear and compression is unknown. The aims of this study were: (i) to evaluate whether specific regions of bovine deep digital flexor tendons exhibited different strain attenuation from macro to micro length scales, and (ii) to elucidate mechanisms responsible for tendon deformation under shear and compression. Samples from distal and proximal regions of flexor tendons were subjected to three‐step incremental stress‐relaxation tests. Images of tissue markers, photobleached lines on collagen fibers, and nuclei locations were collected before and after loading. Results showed that strain transfer was attenuated from tissue to local matrix under both shear and compression. Nuclear aspect ratios exhibited smaller changes for distal samples, suggesting that cells are more shielded from deformation in the distal region. Collagen fiber sliding was observed to contribute significantly in response to shear, while uncrimping and fiber reorganization were the predominant mechanisms under compression. This study provides insight into microscale mechanisms responsible for multiscale strain attenuation of tendons under non‐tensile macroscale loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1704–1712, 2015.
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.22955