Loading…

Unbalance magnetron plasma source for ion mass-separator

The report presents the results of the preliminary studies characteristics of an unbalanced magnetron plasma source supplied with the transport system based on a curved magnetic field. The aim of these studies was to recognize if the system is suitable, in principle, for mass-separation of a multi-c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2014-01, Vol.552 (1), p.12007-6
Main Authors: Paperny, V L, Krasov, V I, Astrakchantsev, N V, Lebedev, N V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The report presents the results of the preliminary studies characteristics of an unbalanced magnetron plasma source supplied with the transport system based on a curved magnetic field. The aim of these studies was to recognize if the system is suitable, in principle, for mass-separation of a multi-component plasma flow. The magnetron source has 50 mm diameter cathode manufactured of an alloy composed of Cu (64%), Pb (22.5%) and admixtures, about of 14% (Al, Zn, C). By means of an immersion time-of-flight spectrometer, a spatial distribution of ions of the cathode material was measured through the system output cross-section. Distribution of atom of these elements was measured here by the X-ray fluorescence spectrometry as well. Both methods showed that the ions of the lighter element (Cu) were concentrated in the inner part of the plasma flow deflected by the magnetic field while the distribution of the heavy element (Pb) was shifted toward the outer area of the flow. The similar effect was observed for each couple of the elements. Such a system is promising for use in plasma technology of reprocessing spent nuclear fuel, namely for separation heavy radioactive fission product from nuclear waste.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/552/1/012007