Loading…

Corrections to scaling in the critical theory of deconfined criticality

Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge fiel...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-11, Vol.88 (19), Article 195140
Main Author: Bartosch, Lorenz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243
cites cdi_FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243
container_end_page
container_issue 19
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Bartosch, Lorenz
description Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge field. In our functional renormalization group approach, we only expand in covariant derivatives of the fields and use a truncation in which the full field dependence of all wave-function renormalization functions is kept. While we do find critical exponents which agree well with some quantum Monte Carlo studies and support the scenario of deconfined criticality, we also obtain an irrelevant eigenvalue of small magnitude, leading to strong corrections to scaling and slow convergence in related numerical studies.
doi_str_mv 10.1103/PhysRevB.88.195140
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718920648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718920648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_wFOOXrZm8rGbPWrRKhQUUfAWNtlZG9luapIK--9tqXqamfd9mMNDyCWwGQAT18-rMb3g9-1M6xnUCiQ7IhNQihVcqPfj3c5qXTDgcErOUvpkDGQt-YQs5iFGdNmHIdEcaHJN74cP6geaV0hd9Nnvov0R4khDR1t0Yej8gO1_6_N4Tk66pk948Tun5O3-7nX-UCyfFo_zm2XhhCxzIWVnWaXKkpeOc4dgJZatVgIrC7xGlBYrVVvVcc1sLYXUqnHcirYSoLkUU3J1-LuJ4WuLKZu1Tw77vhkwbJOBCnTNWSn1DuUH1MWQUsTObKJfN3E0wMzemvmzZrQ2B2viB5r5Ye4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718920648</pqid></control><display><type>article</type><title>Corrections to scaling in the critical theory of deconfined criticality</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Bartosch, Lorenz</creator><creatorcontrib>Bartosch, Lorenz</creatorcontrib><description>Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge field. In our functional renormalization group approach, we only expand in covariant derivatives of the fields and use a truncation in which the full field dependence of all wave-function renormalization functions is kept. While we do find critical exponents which agree well with some quantum Monte Carlo studies and support the scenario of deconfined criticality, we also obtain an irrelevant eigenvalue of small magnitude, leading to strong corrections to scaling and slow convergence in related numerical studies.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.195140</identifier><language>eng</language><subject>Bonding ; Condensed matter ; Convergence ; Couples ; Derivatives ; Eigenvalues ; Mathematical analysis ; Monte Carlo methods</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-11, Vol.88 (19), Article 195140</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243</citedby><cites>FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bartosch, Lorenz</creatorcontrib><title>Corrections to scaling in the critical theory of deconfined criticality</title><title>Physical review. B, Condensed matter and materials physics</title><description>Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge field. In our functional renormalization group approach, we only expand in covariant derivatives of the fields and use a truncation in which the full field dependence of all wave-function renormalization functions is kept. While we do find critical exponents which agree well with some quantum Monte Carlo studies and support the scenario of deconfined criticality, we also obtain an irrelevant eigenvalue of small magnitude, leading to strong corrections to scaling and slow convergence in related numerical studies.</description><subject>Bonding</subject><subject>Condensed matter</subject><subject>Convergence</subject><subject>Couples</subject><subject>Derivatives</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_wFOOXrZm8rGbPWrRKhQUUfAWNtlZG9luapIK--9tqXqamfd9mMNDyCWwGQAT18-rMb3g9-1M6xnUCiQ7IhNQihVcqPfj3c5qXTDgcErOUvpkDGQt-YQs5iFGdNmHIdEcaHJN74cP6geaV0hd9Nnvov0R4khDR1t0Yej8gO1_6_N4Tk66pk948Tun5O3-7nX-UCyfFo_zm2XhhCxzIWVnWaXKkpeOc4dgJZatVgIrC7xGlBYrVVvVcc1sLYXUqnHcirYSoLkUU3J1-LuJ4WuLKZu1Tw77vhkwbJOBCnTNWSn1DuUH1MWQUsTObKJfN3E0wMzemvmzZrQ2B2viB5r5Ye4</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Bartosch, Lorenz</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131121</creationdate><title>Corrections to scaling in the critical theory of deconfined criticality</title><author>Bartosch, Lorenz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bonding</topic><topic>Condensed matter</topic><topic>Convergence</topic><topic>Couples</topic><topic>Derivatives</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Bartosch, Lorenz</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartosch, Lorenz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrections to scaling in the critical theory of deconfined criticality</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-11-21</date><risdate>2013</risdate><volume>88</volume><issue>19</issue><artnum>195140</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge field. In our functional renormalization group approach, we only expand in covariant derivatives of the fields and use a truncation in which the full field dependence of all wave-function renormalization functions is kept. While we do find critical exponents which agree well with some quantum Monte Carlo studies and support the scenario of deconfined criticality, we also obtain an irrelevant eigenvalue of small magnitude, leading to strong corrections to scaling and slow convergence in related numerical studies.</abstract><doi>10.1103/PhysRevB.88.195140</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-11, Vol.88 (19), Article 195140
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1718920648
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Bonding
Condensed matter
Convergence
Couples
Derivatives
Eigenvalues
Mathematical analysis
Monte Carlo methods
title Corrections to scaling in the critical theory of deconfined criticality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrections%20to%20scaling%20in%20the%20critical%20theory%20of%20deconfined%20criticality&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Bartosch,%20Lorenz&rft.date=2013-11-21&rft.volume=88&rft.issue=19&rft.artnum=195140&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.195140&rft_dat=%3Cproquest_cross%3E1718920648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-44fb0756626c22ce1b4e6d853e7b129ee4be759b5f280b943485ac2b3d7318243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718920648&rft_id=info:pmid/&rfr_iscdi=true