Loading…
Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs
Antiferromagnetic semiconductors are new alternative materials for spintronic applications and spin valves. In this work, we report a detailed investigation of two antiferromagnetic semiconductors AMnAs (A = Li, LaO), which are isostructural to the well-known LiFeAs and LaOFeAs superconductors. Here...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-11, Vol.88 (18), Article 184429 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antiferromagnetic semiconductors are new alternative materials for spintronic applications and spin valves. In this work, we report a detailed investigation of two antiferromagnetic semiconductors AMnAs (A = Li, LaO), which are isostructural to the well-known LiFeAs and LaOFeAs superconductors. Here we present a comparison between the structural, magnetic, and electronic properties of LiMnAs, LaOMnAs, and related materials. Interestingly, both LiMnAs and LaOMnAs show a variation in resistivity with more than five orders of magnitude, making them particularly suitable for use in future electronic devices. Neutron and x-ray diffraction measurements on LiMnAs show a magnetic phase transition corresponding to the Neel temperature of 373.8 K, and a structural transition from the tetragonal to the cubic phase at 768 K. These experimental results are supported by density functional theory calculations. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.88.184429 |