Loading…

Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study

The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with is...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306
Main Authors: Lindsay, L., Broido, D. A., Reinecke, T. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3
cites cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3
container_end_page
container_issue 14
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Lindsay, L.
Broido, D. A.
Reinecke, T. L.
description The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.
doi_str_mv 10.1103/PhysRevB.88.144306
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718922016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718922016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</originalsourceid><addsrcrecordid>eNo1kM9LwzAYhoMoOKf_gKccvXQmadOm3ubwFwwcouAtZOmXNdI2NUkn_e-tzJ2-9_C-Dx8PQteULCgl6e2mHsMb7O8XQixolqUkP0EzyjlJWMo_T6dMSpEQyug5ugjhixCalRmboWFTu851iQ0uuh5w0CpG8LbbYdVVONbgW9Vg7bpq0NHubRyx7XCr_kqqCfjHxhor3Ci_A3ykgDGg4x1eYmN9iEk_AbXtGwg4xKEaL9GZmcZw9X_n6OPx4X31nKxfn15Wy3WimSAxMZVSeaYzVkBumCpMvmXMGMYqVfCMCF6mLGWwLXjBDeHc8EpNNvJpIzjQKp2jmwO39-57gBBla4OGplEduCFIWlBRMkZoPlXZoaq9C8GDkdPTrfKjpET-OZZHx1IIeXCc_gKLDXPC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718922016</pqid></control><display><type>article</type><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</creator><creatorcontrib>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</creatorcontrib><description>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.144306</identifier><language>eng</language><subject>Carbides ; Heat transfer ; Isotope effect ; Isotopes ; Phonons ; Scattering ; Semiconductors ; Thermal conductivity</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</citedby><cites>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Reinecke, T. L.</creatorcontrib><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><title>Physical review. B, Condensed matter and materials physics</title><description>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</description><subject>Carbides</subject><subject>Heat transfer</subject><subject>Isotope effect</subject><subject>Isotopes</subject><subject>Phonons</subject><subject>Scattering</subject><subject>Semiconductors</subject><subject>Thermal conductivity</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kM9LwzAYhoMoOKf_gKccvXQmadOm3ubwFwwcouAtZOmXNdI2NUkn_e-tzJ2-9_C-Dx8PQteULCgl6e2mHsMb7O8XQixolqUkP0EzyjlJWMo_T6dMSpEQyug5ugjhixCalRmboWFTu851iQ0uuh5w0CpG8LbbYdVVONbgW9Vg7bpq0NHubRyx7XCr_kqqCfjHxhor3Ci_A3ykgDGg4x1eYmN9iEk_AbXtGwg4xKEaL9GZmcZw9X_n6OPx4X31nKxfn15Wy3WimSAxMZVSeaYzVkBumCpMvmXMGMYqVfCMCF6mLGWwLXjBDeHc8EpNNvJpIzjQKp2jmwO39-57gBBla4OGplEduCFIWlBRMkZoPlXZoaq9C8GDkdPTrfKjpET-OZZHx1IIeXCc_gKLDXPC</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Lindsay, L.</creator><creator>Broido, D. A.</creator><creator>Reinecke, T. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131015</creationdate><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><author>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbides</topic><topic>Heat transfer</topic><topic>Isotope effect</topic><topic>Isotopes</topic><topic>Phonons</topic><topic>Scattering</topic><topic>Semiconductors</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Reinecke, T. L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, L.</au><au>Broido, D. A.</au><au>Reinecke, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-10-15</date><risdate>2013</risdate><volume>88</volume><issue>14</issue><artnum>144306</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</abstract><doi>10.1103/PhysRevB.88.144306</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1718922016
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Carbides
Heat transfer
Isotope effect
Isotopes
Phonons
Scattering
Semiconductors
Thermal conductivity
title Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon-isotope%20scattering%20and%20thermal%20conductivity%20in%20materials%20with%20a%20large%20isotope%20effect:%20A%20first-principles%20study&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Lindsay,%20L.&rft.date=2013-10-15&rft.volume=88&rft.issue=14&rft.artnum=144306&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.144306&rft_dat=%3Cproquest_cross%3E1718922016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718922016&rft_id=info:pmid/&rfr_iscdi=true