Loading…
Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study
The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with is...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3 |
container_end_page | |
container_issue | 14 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 88 |
creator | Lindsay, L. Broido, D. A. Reinecke, T. L. |
description | The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification. |
doi_str_mv | 10.1103/PhysRevB.88.144306 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718922016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718922016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</originalsourceid><addsrcrecordid>eNo1kM9LwzAYhoMoOKf_gKccvXQmadOm3ubwFwwcouAtZOmXNdI2NUkn_e-tzJ2-9_C-Dx8PQteULCgl6e2mHsMb7O8XQixolqUkP0EzyjlJWMo_T6dMSpEQyug5ugjhixCalRmboWFTu851iQ0uuh5w0CpG8LbbYdVVONbgW9Vg7bpq0NHubRyx7XCr_kqqCfjHxhor3Ci_A3ykgDGg4x1eYmN9iEk_AbXtGwg4xKEaL9GZmcZw9X_n6OPx4X31nKxfn15Wy3WimSAxMZVSeaYzVkBumCpMvmXMGMYqVfCMCF6mLGWwLXjBDeHc8EpNNvJpIzjQKp2jmwO39-57gBBla4OGplEduCFIWlBRMkZoPlXZoaq9C8GDkdPTrfKjpET-OZZHx1IIeXCc_gKLDXPC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718922016</pqid></control><display><type>article</type><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</creator><creatorcontrib>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</creatorcontrib><description>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.144306</identifier><language>eng</language><subject>Carbides ; Heat transfer ; Isotope effect ; Isotopes ; Phonons ; Scattering ; Semiconductors ; Thermal conductivity</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</citedby><cites>FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Reinecke, T. L.</creatorcontrib><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><title>Physical review. B, Condensed matter and materials physics</title><description>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</description><subject>Carbides</subject><subject>Heat transfer</subject><subject>Isotope effect</subject><subject>Isotopes</subject><subject>Phonons</subject><subject>Scattering</subject><subject>Semiconductors</subject><subject>Thermal conductivity</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kM9LwzAYhoMoOKf_gKccvXQmadOm3ubwFwwcouAtZOmXNdI2NUkn_e-tzJ2-9_C-Dx8PQteULCgl6e2mHsMb7O8XQixolqUkP0EzyjlJWMo_T6dMSpEQyug5ugjhixCalRmboWFTu851iQ0uuh5w0CpG8LbbYdVVONbgW9Vg7bpq0NHubRyx7XCr_kqqCfjHxhor3Ci_A3ykgDGg4x1eYmN9iEk_AbXtGwg4xKEaL9GZmcZw9X_n6OPx4X31nKxfn15Wy3WimSAxMZVSeaYzVkBumCpMvmXMGMYqVfCMCF6mLGWwLXjBDeHc8EpNNvJpIzjQKp2jmwO39-57gBBla4OGplEduCFIWlBRMkZoPlXZoaq9C8GDkdPTrfKjpET-OZZHx1IIeXCc_gKLDXPC</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Lindsay, L.</creator><creator>Broido, D. A.</creator><creator>Reinecke, T. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131015</creationdate><title>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</title><author>Lindsay, L. ; Broido, D. A. ; Reinecke, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbides</topic><topic>Heat transfer</topic><topic>Isotope effect</topic><topic>Isotopes</topic><topic>Phonons</topic><topic>Scattering</topic><topic>Semiconductors</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, L.</creatorcontrib><creatorcontrib>Broido, D. A.</creatorcontrib><creatorcontrib>Reinecke, T. L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, L.</au><au>Broido, D. A.</au><au>Reinecke, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-10-15</date><risdate>2013</risdate><volume>88</volume><issue>14</issue><artnum>144306</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The interplay between phonon-isotope and phonon-phonon scattering in determining lattice thermal conductivities in semiconductors and insulators is examined using an ab initio Boltzmann transport equation approach. We identify materials with large enhancements to their thermal conductivities with isotopic purification, known as the isotope effect, and we focus in particular on results for beryllium-VI compounds and cubic germanium carbide. We find that germanium carbide and beryllium selenide have very large room temperature isotope effects of 450%, far larger than in any other material. Thus, isotopic purification in these materials gives surprisingly high intrinsic room temperature thermal conductivities, over 1500 Wm super(-1) K super(-1) for germanium carbide and over 600 Wm super(-1) K super(-1) for beryllium selenide, well above those of the best metals. In compound semiconductors, a large mass ratio of the constituent atoms and large isotope mixture for the heavier atom gives enhanced isotope scattering. A frequency gap between acoustic and optic phonons (also due to a large mass ratio) and bunching of the acoustic phonon branches give weak anharmonic scattering. Combined, weak anharmonic phonon scattering and strong isotope scattering give a large isotope effect in the materials examined here. The physical insights discussed in this work will help guide the efficient manipulation of thermal transport properties of compound semiconductors through isotopic modification.</abstract><doi>10.1103/PhysRevB.88.144306</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-10, Vol.88 (14), Article 144306 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1718922016 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Carbides Heat transfer Isotope effect Isotopes Phonons Scattering Semiconductors Thermal conductivity |
title | Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon-isotope%20scattering%20and%20thermal%20conductivity%20in%20materials%20with%20a%20large%20isotope%20effect:%20A%20first-principles%20study&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Lindsay,%20L.&rft.date=2013-10-15&rft.volume=88&rft.issue=14&rft.artnum=144306&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.144306&rft_dat=%3Cproquest_cross%3E1718922016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-fdaa64c427e6f2a7f6b22ff22da75408593232eb7575f055f5da103664c85e1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718922016&rft_id=info:pmid/&rfr_iscdi=true |