Loading…
A Triggering Mechanism for Rapid Intensification of Tropical Cyclones
Triggering processes for the rapidly intensifying phase of a tropical cyclone (TC) were investigated on the basis of numerical experiments using a three-dimensional nonhydrostatic model. The results revealed that the rapid intensification of the simulated TC commenced following the formation of a ci...
Saved in:
Published in: | Journal of the atmospheric sciences 2015-07, Vol.72 (7), p.2666-2681 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Triggering processes for the rapidly intensifying phase of a tropical cyclone (TC) were investigated on the basis of numerical experiments using a three-dimensional nonhydrostatic model. The results revealed that the rapid intensification of the simulated TC commenced following the formation of a circular cloud, which occurred about 12 h after the TC became essentially axisymmetric. The circular cloud (eyewall) evolved from a cloudy convective cell that was originally generated near the radius of maximum wind speed (RMW). The development of the convective cell in the eyewall was closely related to the radial location of the strong boundary layer convergence of axisymmetric flow. The radius of maximum convergence (RMC) was small relative to the RMW when the TC vortex was weak, which is consistent with the boundary layer theory for a rotating fluid system on a frictional surface. As the TC intensified, the RMC approached the RMW. An eyewall was very likely to form in the simulated TC when the RMC approached the RMW. Because the RMC is theoretically determined by a Rossby number defined by the maximum tangential velocity, RMW, and Coriolis parameter, a series of numerical experiments was conducted by changing the three parameters. The results were consistent with the hypothesis that intensification occurs earlier for larger Rossby numbers. This finding indicates that initial TC vortices with larger Rossby numbers are more likely to experience rapid intensification and, hence, to evolve into strong hurricanes. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-14-0193.1 |