Loading…

Renormalization Group as a Probe for Dynamical Systems

The use of renormalization group (RG) in the analysis of nonlinear dynamical problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative renormalization group theory of Chen et al can be used as an effective tool for asymptotic analysis for various nonlinear dynamical osc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2011-09, Vol.319 (1), p.012017-11
Main Authors: Sarkar, Amartya, Bhattacharjee, J K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683
cites cdi_FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683
container_end_page 11
container_issue 1
container_start_page 012017
container_title Journal of physics. Conference series
container_volume 319
creator Sarkar, Amartya
Bhattacharjee, J K
description The use of renormalization group (RG) in the analysis of nonlinear dynamical problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative renormalization group theory of Chen et al can be used as an effective tool for asymptotic analysis for various nonlinear dynamical oscillators. Based on our studies [2] done on two-dimensional autonomous systems, as well as forced non-autonomous systems, we propose a unified methodology – that uses renormalization group theory – for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers.
doi_str_mv 10.1088/1742-6596/319/1/012017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718923052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579453142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BSl48VKbyUfTHGXVVVhQ_DiHtE2gS9vUpD2sv96Wioos5jKBed6Z4UHoHPAV4CxLQDASp1ymCQWZQIKBYBAHaPHdOPz1P0YnIWwxpuMTC5Q-m9b5RtfVh-4r10Zr74Yu0iHS0ZN3uYms89HNrtVNVeg6etmF3jThFB1ZXQdz9lWX6O3u9nV1H28e1w-r601cMMb6WBjJbM5JURpKtSlSKLkEoCWD3FjMcwGMWUKZyQXlJSUgtZYZK6wVHKcZXaLLeW7n3ftgQq-aKhSmrnVr3BAUCMgkoZiTEb34g27d4NvxOkW4kIxTYBOVzlThXQjeWNX5qtF-pwCrSaeaTKnJlBp1KlCzzjEYz8HKdT-ZvazqSjvysIf_f8cnzuOCMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579453142</pqid></control><display><type>article</type><title>Renormalization Group as a Probe for Dynamical Systems</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarkar, Amartya ; Bhattacharjee, J K</creator><creatorcontrib>Sarkar, Amartya ; Bhattacharjee, J K</creatorcontrib><description>The use of renormalization group (RG) in the analysis of nonlinear dynamical problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative renormalization group theory of Chen et al can be used as an effective tool for asymptotic analysis for various nonlinear dynamical oscillators. Based on our studies [2] done on two-dimensional autonomous systems, as well as forced non-autonomous systems, we propose a unified methodology – that uses renormalization group theory – for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/319/1/012017</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Classification ; Dynamical systems ; Group theory ; Methodology ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Orbits ; Oscillators ; Physics ; Stability analysis</subject><ispartof>Journal of physics. Conference series, 2011-09, Vol.319 (1), p.012017-11</ispartof><rights>Copyright IOP Publishing Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683</citedby><cites>FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2579453142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Sarkar, Amartya</creatorcontrib><creatorcontrib>Bhattacharjee, J K</creatorcontrib><title>Renormalization Group as a Probe for Dynamical Systems</title><title>Journal of physics. Conference series</title><description>The use of renormalization group (RG) in the analysis of nonlinear dynamical problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative renormalization group theory of Chen et al can be used as an effective tool for asymptotic analysis for various nonlinear dynamical oscillators. Based on our studies [2] done on two-dimensional autonomous systems, as well as forced non-autonomous systems, we propose a unified methodology – that uses renormalization group theory – for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers.</description><subject>Asymptotic properties</subject><subject>Classification</subject><subject>Dynamical systems</subject><subject>Group theory</subject><subject>Methodology</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Orbits</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Stability analysis</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1LxDAQhoMouK7-BSl48VKbyUfTHGXVVVhQ_DiHtE2gS9vUpD2sv96Wioos5jKBed6Z4UHoHPAV4CxLQDASp1ymCQWZQIKBYBAHaPHdOPz1P0YnIWwxpuMTC5Q-m9b5RtfVh-4r10Zr74Yu0iHS0ZN3uYms89HNrtVNVeg6etmF3jThFB1ZXQdz9lWX6O3u9nV1H28e1w-r601cMMb6WBjJbM5JURpKtSlSKLkEoCWD3FjMcwGMWUKZyQXlJSUgtZYZK6wVHKcZXaLLeW7n3ftgQq-aKhSmrnVr3BAUCMgkoZiTEb34g27d4NvxOkW4kIxTYBOVzlThXQjeWNX5qtF-pwCrSaeaTKnJlBp1KlCzzjEYz8HKdT-ZvazqSjvysIf_f8cnzuOCMg</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Sarkar, Amartya</creator><creator>Bhattacharjee, J K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20110915</creationdate><title>Renormalization Group as a Probe for Dynamical Systems</title><author>Sarkar, Amartya ; Bhattacharjee, J K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Classification</topic><topic>Dynamical systems</topic><topic>Group theory</topic><topic>Methodology</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Orbits</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Amartya</creatorcontrib><creatorcontrib>Bhattacharjee, J K</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Amartya</au><au>Bhattacharjee, J K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization Group as a Probe for Dynamical Systems</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>319</volume><issue>1</issue><spage>012017</spage><epage>11</epage><pages>012017-11</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The use of renormalization group (RG) in the analysis of nonlinear dynamical problems has been pioneered by Goldenfeld and co-workers [1]. We show that perturbative renormalization group theory of Chen et al can be used as an effective tool for asymptotic analysis for various nonlinear dynamical oscillators. Based on our studies [2] done on two-dimensional autonomous systems, as well as forced non-autonomous systems, we propose a unified methodology – that uses renormalization group theory – for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/319/1/012017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2011-09, Vol.319 (1), p.012017-11
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718923052
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Asymptotic properties
Classification
Dynamical systems
Group theory
Methodology
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Orbits
Oscillators
Physics
Stability analysis
title Renormalization Group as a Probe for Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20Group%20as%20a%20Probe%20for%20Dynamical%20Systems&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sarkar,%20Amartya&rft.date=2011-09-15&rft.volume=319&rft.issue=1&rft.spage=012017&rft.epage=11&rft.pages=012017-11&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/319/1/012017&rft_dat=%3Cproquest_cross%3E2579453142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-7e94fb52cde33aec61d59113d41bef05b7144f234eb735d3219aa984cff750683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579453142&rft_id=info:pmid/&rfr_iscdi=true