Loading…
Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor
Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used...
Saved in:
Published in: | Journal of materials research 2012-12, Vol.27 (24), p.3110-3116 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3 |
container_end_page | 3116 |
container_issue | 24 |
container_start_page | 3110 |
container_title | Journal of materials research |
container_volume | 27 |
creator | Rice, Zachary P. Briggs, Benjamin D. Bishop, Seann M. Cady, Nathaniel C. |
description | Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically |
doi_str_mv | 10.1557/jmr.2012.390 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718924795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_390</cupid><sourcerecordid>2897278621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs7f0DAjQun5tmZLKU-oeBG12Emc6emdJJp0intvzdDuxARXN3F-c7H5SB0TcmESpnfL9swYYSyCVfkBI0YESKTnE1P0YgUhciYouIcXcS4JIRKkosRco-whZXvWnAb7Btc4mhX1niH_c7WkFVlhBoHiDZu7BZwC60Pe1zD1hrAfbRuMXQ667LU-drXwS_ADZIIcd1bvysd4C6A6UP04RKdNWWKro53jD6fnz5mr9n8_eVt9jDPjKBkk3HCCyq4kLlReUWrclpJMeWClpwYLosGlIKa1XmjKpWCxAhDqKBGgWFFxcfo9uDtgl_3EDe6tdHAapW-8X3UNKeFYiJXMqE3v9Cl74NL32nKCpWrKZEqUXcHygQfY4BGd8G2ZdhrSvQwvk7j62F8ncZPeHbAY8LcAsIP6d_85Kgv2yrYegH_FL4BgnqWog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289796059</pqid></control><display><type>article</type><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</creator><creatorcontrib>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</creatorcontrib><description>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically <3 V, while reset voltages were <1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.390</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemical vapor deposition ; Copper ; Data storage ; Devices ; Electric potential ; Electrodes ; Electrons ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Memory devices ; Metal oxides ; Nanotechnology ; Plating ; Random access memory ; Semiconductors ; Sensors ; Silicon wafers ; Switching ; Voltage</subject><ispartof>Journal of materials research, 2012-12, Vol.27 (24), p.3110-3116</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</citedby><cites>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289796059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289796059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,36044,44346,74646</link.rule.ids></links><search><creatorcontrib>Rice, Zachary P.</creatorcontrib><creatorcontrib>Briggs, Benjamin D.</creatorcontrib><creatorcontrib>Bishop, Seann M.</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically <3 V, while reset voltages were <1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical vapor deposition</subject><subject>Copper</subject><subject>Data storage</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Memory devices</subject><subject>Metal oxides</subject><subject>Nanotechnology</subject><subject>Plating</subject><subject>Random access memory</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Silicon wafers</subject><subject>Switching</subject><subject>Voltage</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkEtLAzEUhYMoWKs7f0DAjQun5tmZLKU-oeBG12Emc6emdJJp0intvzdDuxARXN3F-c7H5SB0TcmESpnfL9swYYSyCVfkBI0YESKTnE1P0YgUhciYouIcXcS4JIRKkosRco-whZXvWnAb7Btc4mhX1niH_c7WkFVlhBoHiDZu7BZwC60Pe1zD1hrAfbRuMXQ667LU-drXwS_ADZIIcd1bvysd4C6A6UP04RKdNWWKro53jD6fnz5mr9n8_eVt9jDPjKBkk3HCCyq4kLlReUWrclpJMeWClpwYLosGlIKa1XmjKpWCxAhDqKBGgWFFxcfo9uDtgl_3EDe6tdHAapW-8X3UNKeFYiJXMqE3v9Cl74NL32nKCpWrKZEqUXcHygQfY4BGd8G2ZdhrSvQwvk7j62F8ncZPeHbAY8LcAsIP6d_85Kgv2yrYegH_FL4BgnqWog</recordid><startdate>20121228</startdate><enddate>20121228</enddate><creator>Rice, Zachary P.</creator><creator>Briggs, Benjamin D.</creator><creator>Bishop, Seann M.</creator><creator>Cady, Nathaniel C.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20121228</creationdate><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><author>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical vapor deposition</topic><topic>Copper</topic><topic>Data storage</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Memory devices</topic><topic>Metal oxides</topic><topic>Nanotechnology</topic><topic>Plating</topic><topic>Random access memory</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Silicon wafers</topic><topic>Switching</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, Zachary P.</creatorcontrib><creatorcontrib>Briggs, Benjamin D.</creatorcontrib><creatorcontrib>Bishop, Seann M.</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, Zachary P.</au><au>Briggs, Benjamin D.</au><au>Bishop, Seann M.</au><au>Cady, Nathaniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2012-12-28</date><risdate>2012</risdate><volume>27</volume><issue>24</issue><spage>3110</spage><epage>3116</epage><pages>3110-3116</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically <3 V, while reset voltages were <1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.390</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2012-12, Vol.27 (24), p.3110-3116 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718924795 |
source | ABI/INFORM Global; Springer Link |
subjects | Applied and Technical Physics Biomaterials Chemical vapor deposition Copper Data storage Devices Electric potential Electrodes Electrons Inorganic Chemistry Materials Engineering Materials research Materials Science Memory devices Metal oxides Nanotechnology Plating Random access memory Semiconductors Sensors Silicon wafers Switching Voltage |
title | Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20silicon%20oxide-based%20resistive%20memory%20device%20using%20a%20spin-on%20hydrogen%20silsesquioxane%20precursor&rft.jtitle=Journal%20of%20materials%20research&rft.au=Rice,%20Zachary%20P.&rft.date=2012-12-28&rft.volume=27&rft.issue=24&rft.spage=3110&rft.epage=3116&rft.pages=3110-3116&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.390&rft_dat=%3Cproquest_cross%3E2897278621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289796059&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_390&rfr_iscdi=true |