Loading…

Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor

Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2012-12, Vol.27 (24), p.3110-3116
Main Authors: Rice, Zachary P., Briggs, Benjamin D., Bishop, Seann M., Cady, Nathaniel C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3
cites cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3
container_end_page 3116
container_issue 24
container_start_page 3110
container_title Journal of materials research
container_volume 27
creator Rice, Zachary P.
Briggs, Benjamin D.
Bishop, Seann M.
Cady, Nathaniel C.
description Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically
doi_str_mv 10.1557/jmr.2012.390
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718924795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_390</cupid><sourcerecordid>2897278621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs7f0DAjQun5tmZLKU-oeBG12Emc6emdJJp0intvzdDuxARXN3F-c7H5SB0TcmESpnfL9swYYSyCVfkBI0YESKTnE1P0YgUhciYouIcXcS4JIRKkosRco-whZXvWnAb7Btc4mhX1niH_c7WkFVlhBoHiDZu7BZwC60Pe1zD1hrAfbRuMXQ667LU-drXwS_ADZIIcd1bvysd4C6A6UP04RKdNWWKro53jD6fnz5mr9n8_eVt9jDPjKBkk3HCCyq4kLlReUWrclpJMeWClpwYLosGlIKa1XmjKpWCxAhDqKBGgWFFxcfo9uDtgl_3EDe6tdHAapW-8X3UNKeFYiJXMqE3v9Cl74NL32nKCpWrKZEqUXcHygQfY4BGd8G2ZdhrSvQwvk7j62F8ncZPeHbAY8LcAsIP6d_85Kgv2yrYegH_FL4BgnqWog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289796059</pqid></control><display><type>article</type><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</creator><creatorcontrib>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</creatorcontrib><description>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically &lt;3 V, while reset voltages were &lt;1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.390</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemical vapor deposition ; Copper ; Data storage ; Devices ; Electric potential ; Electrodes ; Electrons ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Memory devices ; Metal oxides ; Nanotechnology ; Plating ; Random access memory ; Semiconductors ; Sensors ; Silicon wafers ; Switching ; Voltage</subject><ispartof>Journal of materials research, 2012-12, Vol.27 (24), p.3110-3116</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</citedby><cites>FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289796059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289796059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,36044,44346,74646</link.rule.ids></links><search><creatorcontrib>Rice, Zachary P.</creatorcontrib><creatorcontrib>Briggs, Benjamin D.</creatorcontrib><creatorcontrib>Bishop, Seann M.</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically &lt;3 V, while reset voltages were &lt;1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical vapor deposition</subject><subject>Copper</subject><subject>Data storage</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Memory devices</subject><subject>Metal oxides</subject><subject>Nanotechnology</subject><subject>Plating</subject><subject>Random access memory</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Silicon wafers</subject><subject>Switching</subject><subject>Voltage</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkEtLAzEUhYMoWKs7f0DAjQun5tmZLKU-oeBG12Emc6emdJJp0intvzdDuxARXN3F-c7H5SB0TcmESpnfL9swYYSyCVfkBI0YESKTnE1P0YgUhciYouIcXcS4JIRKkosRco-whZXvWnAb7Btc4mhX1niH_c7WkFVlhBoHiDZu7BZwC60Pe1zD1hrAfbRuMXQ667LU-drXwS_ADZIIcd1bvysd4C6A6UP04RKdNWWKro53jD6fnz5mr9n8_eVt9jDPjKBkk3HCCyq4kLlReUWrclpJMeWClpwYLosGlIKa1XmjKpWCxAhDqKBGgWFFxcfo9uDtgl_3EDe6tdHAapW-8X3UNKeFYiJXMqE3v9Cl74NL32nKCpWrKZEqUXcHygQfY4BGd8G2ZdhrSvQwvk7j62F8ncZPeHbAY8LcAsIP6d_85Kgv2yrYegH_FL4BgnqWog</recordid><startdate>20121228</startdate><enddate>20121228</enddate><creator>Rice, Zachary P.</creator><creator>Briggs, Benjamin D.</creator><creator>Bishop, Seann M.</creator><creator>Cady, Nathaniel C.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20121228</creationdate><title>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</title><author>Rice, Zachary P. ; Briggs, Benjamin D. ; Bishop, Seann M. ; Cady, Nathaniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical vapor deposition</topic><topic>Copper</topic><topic>Data storage</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Memory devices</topic><topic>Metal oxides</topic><topic>Nanotechnology</topic><topic>Plating</topic><topic>Random access memory</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Silicon wafers</topic><topic>Switching</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, Zachary P.</creatorcontrib><creatorcontrib>Briggs, Benjamin D.</creatorcontrib><creatorcontrib>Bishop, Seann M.</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, Zachary P.</au><au>Briggs, Benjamin D.</au><au>Bishop, Seann M.</au><au>Cady, Nathaniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2012-12-28</date><risdate>2012</risdate><volume>27</volume><issue>24</issue><spage>3110</spage><epage>3116</epage><pages>3110-3116</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically &lt;3 V, while reset voltages were &lt;1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.390</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2012-12, Vol.27 (24), p.3110-3116
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1718924795
source ABI/INFORM Global; Springer Link
subjects Applied and Technical Physics
Biomaterials
Chemical vapor deposition
Copper
Data storage
Devices
Electric potential
Electrodes
Electrons
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Memory devices
Metal oxides
Nanotechnology
Plating
Random access memory
Semiconductors
Sensors
Silicon wafers
Switching
Voltage
title Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20silicon%20oxide-based%20resistive%20memory%20device%20using%20a%20spin-on%20hydrogen%20silsesquioxane%20precursor&rft.jtitle=Journal%20of%20materials%20research&rft.au=Rice,%20Zachary%20P.&rft.date=2012-12-28&rft.volume=27&rft.issue=24&rft.spage=3110&rft.epage=3116&rft.pages=3110-3116&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.390&rft_dat=%3Cproquest_cross%3E2897278621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-3038143457c97b1ba6b546341a30c358fe99ed2d7f9b94637b14c0141c9ec28b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289796059&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_390&rfr_iscdi=true