Loading…
Understanding the assembly of Kepler's tightly-packed planetary systems
The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler 11, in which ensembles of several planets are found in very closely packed orbits. These systems present a challenge for traditional formation and migration scenarios. We present a dynamical study of the evol...
Saved in:
Published in: | Proceedings of the International Astronomical Union 2014-07, Vol.9 (S310), p.90-92 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler 11, in which ensembles of several planets are found in very closely packed orbits. These systems present a challenge for traditional formation and migration scenarios. We present a dynamical study of the evolution of these systems using an N-body approach, incorporating both smooth and stochastic migration forces and a variety of initial conditions, in order to assess the feasibility of assembling such systems via traditional, disc-driven migration. |
---|---|
ISSN: | 1743-9213 1743-9221 |
DOI: | 10.1017/S1743921314007935 |