Loading…

Delay-dependent state feedback stabilization for a networked control model with two additive input delays

This paper is centered on delay-dependent state feedback stabilization for a networked control model with two additive input delays. Firstly delay-dependent stability is investigated. By splitting the whole delay interval into subintervals according to the delays, a Lyapunov functional is constructe...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2015-08, Vol.265, p.748-758
Main Authors: Shao, Hanyong, Zhang, Zhengqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is centered on delay-dependent state feedback stabilization for a networked control model with two additive input delays. Firstly delay-dependent stability is investigated. By splitting the whole delay interval into subintervals according to the delays, a Lyapunov functional is constructed. To reduce conservatism we handle the Lyapunov functional in two ways. More specifically, we take the Lyapunov functional as a whole to examine its positive definite, rather than restrict each term of it to positive definite as usual. In addition, when estimating the derivative of the Lyapunov functional, we manage to get a fairly tighter upper bound by introducing different slack variables for the different subintervals. The resulting stability results turn out dependent on the two delays separately, and less conservative than some existing ones. Then, based on the stability results state feedback stabilization is studied. Delay-dependent conditions are formulated for the controller such that the closed-loop system is asymptotically stable. Finally examples are given to show the less conservatism of the stability results and the effectiveness of the proposed stabilization method.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.05.114