Loading…
Monitoring antiferromagnetism via angle-resolved Auger photoelectron coincidence spectroscopy: The case of NiO/Ag(001)
Spin selectivity in angle-resolved Auger photoelectron coincidence spectroscopy (AR-APECS) is used to probe electronic structure in antiferromagnetic thin films. In particular, exploiting the AR-APECS capability to discriminate Auger electron emission events characterized by a different spin of the...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-09, Vol.88 (9), Article 094403 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spin selectivity in angle-resolved Auger photoelectron coincidence spectroscopy (AR-APECS) is used to probe electronic structure in antiferromagnetic thin films. In particular, exploiting the AR-APECS capability to discriminate Auger electron emission events characterized by a different spin of the ion in its final state, a sharp multiplet structure in the Ni MVV Auger line shape of NiO/Ag(001) thin films is measured below the critical Neel temperature. The assignment of multiplet terms follows from a close comparison of the experimental AR-APECS line shapes with the predictions based on semiempirical calculations on a cluster model and an open-band extension of the Cini-Sawatzky approach. In analogy to CoO, also in NiO, above the Neel temperature a more featureless Auger spectrum appears and AR-APECS does not disentangle anymore high-spin and low-spin contributions to the total Auger intensity. Such a behavior, which seems to be a general result for metal oxide antiferromagnetic systems, is discussed. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.88.094403 |