Loading…
Join colourings of chordal graphs
We consider certain partition problems typified by the following two questions. When is a given graph the join of two k-colourable graphs? When is a given graph the join of a k-colourable graph and a graph whose complement is k-colourable? We focus on the class of chordal graphs, and employ the lang...
Saved in:
Published in: | Discrete mathematics 2015-12, Vol.338 (12), p.2453-2461 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3 |
container_end_page | 2461 |
container_issue | 12 |
container_start_page | 2453 |
container_title | Discrete mathematics |
container_volume | 338 |
creator | Hell, Pavol Yen, Pei-Lan |
description | We consider certain partition problems typified by the following two questions. When is a given graph the join of two k-colourable graphs? When is a given graph the join of a k-colourable graph and a graph whose complement is k-colourable? We focus on the class of chordal graphs, and employ the language of matrix partitions. Our emphasis is on forbidden induced subgraph characterizations. We describe all chordal minimal obstructions to the existence of such partitions; they are surprisingly small and regular. We also give another characterization which yields a more efficient recognition algorithm. By contrast, most of these partition problems are NP-complete if chordality is not assumed. |
doi_str_mv | 10.1016/j.disc.2015.06.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718938691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X15002290</els_id><sourcerecordid>1718938691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNW4czPje0knyYAbKdYPCm4UugsxedOmTCc1aQX_vVPq2tXjwT0X7mHsGqFCQHm3rnzIruKAdQWyAqhP2Ai14qXUuDhlIwDkpZD14pxd5LyG4ZdCj9jNawx94WIX9yn0y1zEtnCrmLztimWy21W-ZGet7TJd_d0x-5g9vk-fy_nb08v0YV46IcSubFDVtfROA9WcJjChxhNXratBfUrkHsSkla1qhFXKodSCK6W95I6Ul96KMbs99m5T_NpT3pnNMIm6zvYU99mgQt0ILRscovwYdSnmnKg12xQ2Nv0YBHPwYdbm4MMcfBiQZvAxQPdHiIYR34GSyS5Q78iHRG5nfAz_4b_c1GdJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718938691</pqid></control><display><type>article</type><title>Join colourings of chordal graphs</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hell, Pavol ; Yen, Pei-Lan</creator><creatorcontrib>Hell, Pavol ; Yen, Pei-Lan</creatorcontrib><description>We consider certain partition problems typified by the following two questions. When is a given graph the join of two k-colourable graphs? When is a given graph the join of a k-colourable graph and a graph whose complement is k-colourable? We focus on the class of chordal graphs, and employ the language of matrix partitions. Our emphasis is on forbidden induced subgraph characterizations. We describe all chordal minimal obstructions to the existence of such partitions; they are surprisingly small and regular. We also give another characterization which yields a more efficient recognition algorithm. By contrast, most of these partition problems are NP-complete if chordality is not assumed.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2015.06.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Chordal graph ; Colouring ; Complement ; Forbidden subgraph characterization ; Graph homomorphism ; Graph partition ; Graphs ; Mathematical analysis ; Obstructions ; Partitions ; Recognition ; Split graph</subject><ispartof>Discrete mathematics, 2015-12, Vol.338 (12), p.2453-2461</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3</citedby><cites>FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3</cites><orcidid>0000-0001-7609-9746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hell, Pavol</creatorcontrib><creatorcontrib>Yen, Pei-Lan</creatorcontrib><title>Join colourings of chordal graphs</title><title>Discrete mathematics</title><description>We consider certain partition problems typified by the following two questions. When is a given graph the join of two k-colourable graphs? When is a given graph the join of a k-colourable graph and a graph whose complement is k-colourable? We focus on the class of chordal graphs, and employ the language of matrix partitions. Our emphasis is on forbidden induced subgraph characterizations. We describe all chordal minimal obstructions to the existence of such partitions; they are surprisingly small and regular. We also give another characterization which yields a more efficient recognition algorithm. By contrast, most of these partition problems are NP-complete if chordality is not assumed.</description><subject>Algorithms</subject><subject>Chordal graph</subject><subject>Colouring</subject><subject>Complement</subject><subject>Forbidden subgraph characterization</subject><subject>Graph homomorphism</subject><subject>Graph partition</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Obstructions</subject><subject>Partitions</subject><subject>Recognition</subject><subject>Split graph</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNW4czPje0knyYAbKdYPCm4UugsxedOmTCc1aQX_vVPq2tXjwT0X7mHsGqFCQHm3rnzIruKAdQWyAqhP2Ai14qXUuDhlIwDkpZD14pxd5LyG4ZdCj9jNawx94WIX9yn0y1zEtnCrmLztimWy21W-ZGet7TJd_d0x-5g9vk-fy_nb08v0YV46IcSubFDVtfROA9WcJjChxhNXratBfUrkHsSkla1qhFXKodSCK6W95I6Ul96KMbs99m5T_NpT3pnNMIm6zvYU99mgQt0ILRscovwYdSnmnKg12xQ2Nv0YBHPwYdbm4MMcfBiQZvAxQPdHiIYR34GSyS5Q78iHRG5nfAz_4b_c1GdJ</recordid><startdate>20151206</startdate><enddate>20151206</enddate><creator>Hell, Pavol</creator><creator>Yen, Pei-Lan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7609-9746</orcidid></search><sort><creationdate>20151206</creationdate><title>Join colourings of chordal graphs</title><author>Hell, Pavol ; Yen, Pei-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Chordal graph</topic><topic>Colouring</topic><topic>Complement</topic><topic>Forbidden subgraph characterization</topic><topic>Graph homomorphism</topic><topic>Graph partition</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Obstructions</topic><topic>Partitions</topic><topic>Recognition</topic><topic>Split graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hell, Pavol</creatorcontrib><creatorcontrib>Yen, Pei-Lan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hell, Pavol</au><au>Yen, Pei-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Join colourings of chordal graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2015-12-06</date><risdate>2015</risdate><volume>338</volume><issue>12</issue><spage>2453</spage><epage>2461</epage><pages>2453-2461</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>We consider certain partition problems typified by the following two questions. When is a given graph the join of two k-colourable graphs? When is a given graph the join of a k-colourable graph and a graph whose complement is k-colourable? We focus on the class of chordal graphs, and employ the language of matrix partitions. Our emphasis is on forbidden induced subgraph characterizations. We describe all chordal minimal obstructions to the existence of such partitions; they are surprisingly small and regular. We also give another characterization which yields a more efficient recognition algorithm. By contrast, most of these partition problems are NP-complete if chordality is not assumed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2015.06.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7609-9746</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2015-12, Vol.338 (12), p.2453-2461 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1718938691 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Chordal graph Colouring Complement Forbidden subgraph characterization Graph homomorphism Graph partition Graphs Mathematical analysis Obstructions Partitions Recognition Split graph |
title | Join colourings of chordal graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Join%20colourings%20of%20chordal%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Hell,%20Pavol&rft.date=2015-12-06&rft.volume=338&rft.issue=12&rft.spage=2453&rft.epage=2461&rft.pages=2453-2461&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2015.06.005&rft_dat=%3Cproquest_cross%3E1718938691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-917556dc80e52e404e9de27fc507b612d034f6f793a77c16832778d62ce7d6da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718938691&rft_id=info:pmid/&rfr_iscdi=true |