Loading…
Impact of Taylor-Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation
Application of pressure‐driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor‐Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure‐driven f...
Saved in:
Published in: | Electrophoresis 2015-07, Vol.36 (14), p.1529-1538 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Application of pressure‐driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor‐Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure‐driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused‐silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor‐Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection. |
---|---|
ISSN: | 0173-0835 1522-2683 |
DOI: | 10.1002/elps.201500034 |