Loading…

Detection of explosives using a hollow cathode discharge ion source

Rationale For public security and safety, it is highly desirable to develop an ion source for the detection of explosives that is highly sensitive, compact in size, robust, and does not use any special carrier gases such as helium. In this work, a hollow cathode discharge (HCD) ion source was develo...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2015-04, Vol.29 (7), p.601-610
Main Authors: Habib, Ahsan, Chen, Lee Chuin, Usmanov, Dilshadbek T., Yu, Zhan, Hiraoka, Kenzo
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4532-26d199a5c5de4890abd9b0005467a124c1c2e7922dd5ac42c9d1efef157c33ee3
cites
container_end_page 610
container_issue 7
container_start_page 601
container_title Rapid communications in mass spectrometry
container_volume 29
creator Habib, Ahsan
Chen, Lee Chuin
Usmanov, Dilshadbek T.
Yu, Zhan
Hiraoka, Kenzo
description Rationale For public security and safety, it is highly desirable to develop an ion source for the detection of explosives that is highly sensitive, compact in size, robust, and does not use any special carrier gases such as helium. In this work, a hollow cathode discharge (HCD) ion source was developed for the detection of explosives using ambient air as a carrier gas. Methods To detect nonvolatile and thermally unstable explosives with high sensitivities, a new HCD ion source was designed and coupled with an ion trap mass spectrometer. Results Five explosives – hexamethylene triperoxide diamine (HMTD), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG) and trinitrotoluene (TNT) – were detected with limits of detection of lower than ng. The intensities of the NO3– adduct ions with RDX, PETN, and NG showed a marked increase with increase in ion source pressure in the range of 1–28 Torr. Conclusions Because the major NOx– ions (x = 2, 3) produced in the plasma act as reagent ions in ion‐molecule reactions of explosives, air is best suited as a carrier gas for the detection of explosives. It is proposed that the NOx– (x = 2, 3) and O3 contributed to the formation of [TNT–H]– and [TNT–NO]– ions, via the reactions NOx– + TNT → [TNT–H]– + HNOx and [TNT]– + O3 → [TNT–NO]– + NO2 + O2. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.7142
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718950733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3758381991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4532-26d199a5c5de4890abd9b0005467a124c1c2e7922dd5ac42c9d1efef157c33ee3</originalsourceid><addsrcrecordid>eNqF0UtP3DAQB3CrKioLVOonqCJx4RKY8SOOjyXlJaBIiLZHy2vPsqHZ9TZOWPj2JOIl9dLTHOZna2b-jH1B2EcAftD6xb5GyT-wCYLROXCBH9kEjMJcoik32VZKdwCIisMntskLjpxrPWHVd-rId3VcZnGW0cOqiam-p5T1qV7eZi6bx6aJ68y7bh4DZaFOfu7aW8rGJyn2racdtjFzTaLPL3Wb_Tw-uqlO84urk7Pq20XupRI850VAY5zyKpAsDbhpMFMAULLQDrn06Dlpw3kIynnJvQlIM5qh0l4IIrHN9p7_XbXxb0-ps4thGmoat6TYJ4saS6NAC_F_WhgjjYQSBrr7D70btloOi4yqNChUUQzq64vqpwsKdtXWC9c-2tdLDiB_Buu6oce3PoIdE7JDQnZMyF5Xl2N993Xq6OHNu_aPLbTQyv7-cWKFOvx1WZ2fWhRP4euPow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698913566</pqid></control><display><type>article</type><title>Detection of explosives using a hollow cathode discharge ion source</title><source>Wiley</source><creator>Habib, Ahsan ; Chen, Lee Chuin ; Usmanov, Dilshadbek T. ; Yu, Zhan ; Hiraoka, Kenzo</creator><creatorcontrib>Habib, Ahsan ; Chen, Lee Chuin ; Usmanov, Dilshadbek T. ; Yu, Zhan ; Hiraoka, Kenzo</creatorcontrib><description>Rationale For public security and safety, it is highly desirable to develop an ion source for the detection of explosives that is highly sensitive, compact in size, robust, and does not use any special carrier gases such as helium. In this work, a hollow cathode discharge (HCD) ion source was developed for the detection of explosives using ambient air as a carrier gas. Methods To detect nonvolatile and thermally unstable explosives with high sensitivities, a new HCD ion source was designed and coupled with an ion trap mass spectrometer. Results Five explosives – hexamethylene triperoxide diamine (HMTD), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG) and trinitrotoluene (TNT) – were detected with limits of detection of lower than ng. The intensities of the NO3– adduct ions with RDX, PETN, and NG showed a marked increase with increase in ion source pressure in the range of 1–28 Torr. Conclusions Because the major NOx– ions (x = 2, 3) produced in the plasma act as reagent ions in ion‐molecule reactions of explosives, air is best suited as a carrier gas for the detection of explosives. It is proposed that the NOx– (x = 2, 3) and O3 contributed to the formation of [TNT–H]– and [TNT–NO]– ions, via the reactions NOx– + TNT → [TNT–H]– + HNOx and [TNT]– + O3 → [TNT–NO]– + NO2 + O2. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.7142</identifier><identifier>PMID: 26212277</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Carriers ; Discharge ; Explosives ; Hollow cathodes ; Ion sources ; PETN ; RDX ; TNT</subject><ispartof>Rapid communications in mass spectrometry, 2015-04, Vol.29 (7), p.601-610</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4532-26d199a5c5de4890abd9b0005467a124c1c2e7922dd5ac42c9d1efef157c33ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26212277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habib, Ahsan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Usmanov, Dilshadbek T.</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><title>Detection of explosives using a hollow cathode discharge ion source</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>Rationale For public security and safety, it is highly desirable to develop an ion source for the detection of explosives that is highly sensitive, compact in size, robust, and does not use any special carrier gases such as helium. In this work, a hollow cathode discharge (HCD) ion source was developed for the detection of explosives using ambient air as a carrier gas. Methods To detect nonvolatile and thermally unstable explosives with high sensitivities, a new HCD ion source was designed and coupled with an ion trap mass spectrometer. Results Five explosives – hexamethylene triperoxide diamine (HMTD), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG) and trinitrotoluene (TNT) – were detected with limits of detection of lower than ng. The intensities of the NO3– adduct ions with RDX, PETN, and NG showed a marked increase with increase in ion source pressure in the range of 1–28 Torr. Conclusions Because the major NOx– ions (x = 2, 3) produced in the plasma act as reagent ions in ion‐molecule reactions of explosives, air is best suited as a carrier gas for the detection of explosives. It is proposed that the NOx– (x = 2, 3) and O3 contributed to the formation of [TNT–H]– and [TNT–NO]– ions, via the reactions NOx– + TNT → [TNT–H]– + HNOx and [TNT]– + O3 → [TNT–NO]– + NO2 + O2. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Carriers</subject><subject>Discharge</subject><subject>Explosives</subject><subject>Hollow cathodes</subject><subject>Ion sources</subject><subject>PETN</subject><subject>RDX</subject><subject>TNT</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0UtP3DAQB3CrKioLVOonqCJx4RKY8SOOjyXlJaBIiLZHy2vPsqHZ9TZOWPj2JOIl9dLTHOZna2b-jH1B2EcAftD6xb5GyT-wCYLROXCBH9kEjMJcoik32VZKdwCIisMntskLjpxrPWHVd-rId3VcZnGW0cOqiam-p5T1qV7eZi6bx6aJ68y7bh4DZaFOfu7aW8rGJyn2racdtjFzTaLPL3Wb_Tw-uqlO84urk7Pq20XupRI850VAY5zyKpAsDbhpMFMAULLQDrn06Dlpw3kIynnJvQlIM5qh0l4IIrHN9p7_XbXxb0-ps4thGmoat6TYJ4saS6NAC_F_WhgjjYQSBrr7D70btloOi4yqNChUUQzq64vqpwsKdtXWC9c-2tdLDiB_Buu6oce3PoIdE7JDQnZMyF5Xl2N993Xq6OHNu_aPLbTQyv7-cWKFOvx1WZ2fWhRP4euPow</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Habib, Ahsan</creator><creator>Chen, Lee Chuin</creator><creator>Usmanov, Dilshadbek T.</creator><creator>Yu, Zhan</creator><creator>Hiraoka, Kenzo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope></search><sort><creationdate>20150415</creationdate><title>Detection of explosives using a hollow cathode discharge ion source</title><author>Habib, Ahsan ; Chen, Lee Chuin ; Usmanov, Dilshadbek T. ; Yu, Zhan ; Hiraoka, Kenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4532-26d199a5c5de4890abd9b0005467a124c1c2e7922dd5ac42c9d1efef157c33ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carriers</topic><topic>Discharge</topic><topic>Explosives</topic><topic>Hollow cathodes</topic><topic>Ion sources</topic><topic>PETN</topic><topic>RDX</topic><topic>TNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habib, Ahsan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Usmanov, Dilshadbek T.</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habib, Ahsan</au><au>Chen, Lee Chuin</au><au>Usmanov, Dilshadbek T.</au><au>Yu, Zhan</au><au>Hiraoka, Kenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of explosives using a hollow cathode discharge ion source</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2015-04-15</date><risdate>2015</risdate><volume>29</volume><issue>7</issue><spage>601</spage><epage>610</epage><pages>601-610</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale For public security and safety, it is highly desirable to develop an ion source for the detection of explosives that is highly sensitive, compact in size, robust, and does not use any special carrier gases such as helium. In this work, a hollow cathode discharge (HCD) ion source was developed for the detection of explosives using ambient air as a carrier gas. Methods To detect nonvolatile and thermally unstable explosives with high sensitivities, a new HCD ion source was designed and coupled with an ion trap mass spectrometer. Results Five explosives – hexamethylene triperoxide diamine (HMTD), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG) and trinitrotoluene (TNT) – were detected with limits of detection of lower than ng. The intensities of the NO3– adduct ions with RDX, PETN, and NG showed a marked increase with increase in ion source pressure in the range of 1–28 Torr. Conclusions Because the major NOx– ions (x = 2, 3) produced in the plasma act as reagent ions in ion‐molecule reactions of explosives, air is best suited as a carrier gas for the detection of explosives. It is proposed that the NOx– (x = 2, 3) and O3 contributed to the formation of [TNT–H]– and [TNT–NO]– ions, via the reactions NOx– + TNT → [TNT–H]– + HNOx and [TNT]– + O3 → [TNT–NO]– + NO2 + O2. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26212277</pmid><doi>10.1002/rcm.7142</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2015-04, Vol.29 (7), p.601-610
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_1718950733
source Wiley
subjects Carriers
Discharge
Explosives
Hollow cathodes
Ion sources
PETN
RDX
TNT
title Detection of explosives using a hollow cathode discharge ion source
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20explosives%20using%20a%20hollow%20cathode%20discharge%20ion%20source&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Habib,%20Ahsan&rft.date=2015-04-15&rft.volume=29&rft.issue=7&rft.spage=601&rft.epage=610&rft.pages=601-610&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.7142&rft_dat=%3Cproquest_pubme%3E3758381991%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4532-26d199a5c5de4890abd9b0005467a124c1c2e7922dd5ac42c9d1efef157c33ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1698913566&rft_id=info:pmid/26212277&rfr_iscdi=true