Loading…

Generalizing Cloud Overlap Treatment to Include the Effect of Wind Shear

Six months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2015-08, Vol.72 (8), p.2865-2876
Main Authors: Di Giuseppe, Francesca, Tompkins, Adrian M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Six months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrelates from maximum toward random overlap as the layer separation distance increases, and the authors demonstrate a systematic impact of wind shear on the resulting decorrelation length scale. As expected, cloud decorrelates over smaller distances as wind shear increases. A simple, empirical linear fit parameterization is suggested that is straightforward to add to existing radiation schemes, although it is shown that the parameters are quite sensitive to the processing details of the cloud mask data and also to the fitting method used. The wind shear–overlap dependency is implemented in the radiation scheme of the ECMWF Integrated Forecast System. It has a similar-magnitude impact on the radiative budget as that of switching from a fixed decorrelation length scale to the latitude-dependent length scale presently used in the operational model, altering the zonal-mean, top-of-atmosphere, equator-to-midlatitude gradient of shortwave radiation by approximately 2 W m−2.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-14-0277.1