Loading…

Tightening elastic ( n , 2)-torus knots

We present a theory for equilibria of elastic torus knots made of a single thin, uniform, homogeneous, isotropic, inextensible, unshearable rod of circular cross-section. The theory is formulated as a special case of an elastic theory of geometrically exact braids consisting of two rods winding arou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2014-10, Vol.544 (1), p.12007-10
Main Authors: Starostin, E L, van der Heijden, G H M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3
cites cdi_FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3
container_end_page 10
container_issue 1
container_start_page 12007
container_title Journal of physics. Conference series
container_volume 544
creator Starostin, E L
van der Heijden, G H M
description We present a theory for equilibria of elastic torus knots made of a single thin, uniform, homogeneous, isotropic, inextensible, unshearable rod of circular cross-section. The theory is formulated as a special case of an elastic theory of geometrically exact braids consisting of two rods winding around each other while remaining at constant distance. We introduce braid strains in terms of which we formulate a second-order variational problem for an action functional that is the sum of the rod elastic energies and constraint terms related to the inextensibility of the rods. The Euler-Lagrange equations for this problem, partly in Euler-Poincare form, yield a compact system of ODEs suitable for numerical solution. By solving an appropriate boundary- value problem for these equations we study knot equilibria as the dimensionless ropelength parameter is varied. We are particularly interested in the approach of the purely geometrical ideal (tightest) limit. For the trefoil knot the tightest shape we could get has a ropelength of 32.85560666, which is remarkably close to the best current estimate. For the pentafoil we find a symmetry-breaking bifurcation.
doi_str_mv 10.1088/1742-6596/544/1/012007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718952163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576732543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_ggQ8WMGYmd3s11GKX1DwUs_LZrOpqWlSd5OD_96ESg_OZQbm4eXlIeQa4QFBqQxlTlPBtch4nmeYAVIAeUJmx8fp8VbqnFzEuAVg48gZuV3Xm8_et3W7SXxjY1-7ZJG0yX1C79K-C0NMvtquj5fkrLJN9Fd_e04-np_Wy9d09f7ytnxcpY5KLVNkWEpdCRTK-bzwQLkGbUHqEplDWTFVWWDWU2YFjpzNC6RelKUTFRQlm5PFIXcfuu_Bx97s6uh809jWd0M0KFFpTlGwEb35h267IbRjO0O5FJJRnk-UOFAudDEGX5l9qHc2_BgEM_kzkxozaTKjP4Pm4I_9AqUHX3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576732543</pqid></control><display><type>article</type><title>Tightening elastic ( n , 2)-torus knots</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Starostin, E L ; van der Heijden, G H M</creator><creatorcontrib>Starostin, E L ; van der Heijden, G H M</creatorcontrib><description>We present a theory for equilibria of elastic torus knots made of a single thin, uniform, homogeneous, isotropic, inextensible, unshearable rod of circular cross-section. The theory is formulated as a special case of an elastic theory of geometrically exact braids consisting of two rods winding around each other while remaining at constant distance. We introduce braid strains in terms of which we formulate a second-order variational problem for an action functional that is the sum of the rod elastic energies and constraint terms related to the inextensibility of the rods. The Euler-Lagrange equations for this problem, partly in Euler-Poincare form, yield a compact system of ODEs suitable for numerical solution. By solving an appropriate boundary- value problem for these equations we study knot equilibria as the dimensionless ropelength parameter is varied. We are particularly interested in the approach of the purely geometrical ideal (tightest) limit. For the trefoil knot the tightest shape we could get has a ropelength of 32.85560666, which is remarkably close to the best current estimate. For the pentafoil we find a symmetry-breaking bifurcation.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/544/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boundary value problems ; Braiding ; Broken symmetry ; Constants ; Euler-Lagrange equation ; Knots ; Mathematical analysis ; Mathematical models ; Physics ; Rods ; Tightening ; Toruses</subject><ispartof>Journal of physics. Conference series, 2014-10, Vol.544 (1), p.12007-10</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3</citedby><cites>FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576732543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589</link.rule.ids></links><search><creatorcontrib>Starostin, E L</creatorcontrib><creatorcontrib>van der Heijden, G H M</creatorcontrib><title>Tightening elastic ( n , 2)-torus knots</title><title>Journal of physics. Conference series</title><description>We present a theory for equilibria of elastic torus knots made of a single thin, uniform, homogeneous, isotropic, inextensible, unshearable rod of circular cross-section. The theory is formulated as a special case of an elastic theory of geometrically exact braids consisting of two rods winding around each other while remaining at constant distance. We introduce braid strains in terms of which we formulate a second-order variational problem for an action functional that is the sum of the rod elastic energies and constraint terms related to the inextensibility of the rods. The Euler-Lagrange equations for this problem, partly in Euler-Poincare form, yield a compact system of ODEs suitable for numerical solution. By solving an appropriate boundary- value problem for these equations we study knot equilibria as the dimensionless ropelength parameter is varied. We are particularly interested in the approach of the purely geometrical ideal (tightest) limit. For the trefoil knot the tightest shape we could get has a ropelength of 32.85560666, which is remarkably close to the best current estimate. For the pentafoil we find a symmetry-breaking bifurcation.</description><subject>Boundary value problems</subject><subject>Braiding</subject><subject>Broken symmetry</subject><subject>Constants</subject><subject>Euler-Lagrange equation</subject><subject>Knots</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Rods</subject><subject>Tightening</subject><subject>Toruses</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_ggQ8WMGYmd3s11GKX1DwUs_LZrOpqWlSd5OD_96ESg_OZQbm4eXlIeQa4QFBqQxlTlPBtch4nmeYAVIAeUJmx8fp8VbqnFzEuAVg48gZuV3Xm8_et3W7SXxjY1-7ZJG0yX1C79K-C0NMvtquj5fkrLJN9Fd_e04-np_Wy9d09f7ytnxcpY5KLVNkWEpdCRTK-bzwQLkGbUHqEplDWTFVWWDWU2YFjpzNC6RelKUTFRQlm5PFIXcfuu_Bx97s6uh809jWd0M0KFFpTlGwEb35h267IbRjO0O5FJJRnk-UOFAudDEGX5l9qHc2_BgEM_kzkxozaTKjP4Pm4I_9AqUHX3E</recordid><startdate>20141020</startdate><enddate>20141020</enddate><creator>Starostin, E L</creator><creator>van der Heijden, G H M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20141020</creationdate><title>Tightening elastic ( n , 2)-torus knots</title><author>Starostin, E L ; van der Heijden, G H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary value problems</topic><topic>Braiding</topic><topic>Broken symmetry</topic><topic>Constants</topic><topic>Euler-Lagrange equation</topic><topic>Knots</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Rods</topic><topic>Tightening</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starostin, E L</creatorcontrib><creatorcontrib>van der Heijden, G H M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starostin, E L</au><au>van der Heijden, G H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightening elastic ( n , 2)-torus knots</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-10-20</date><risdate>2014</risdate><volume>544</volume><issue>1</issue><spage>12007</spage><epage>10</epage><pages>12007-10</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We present a theory for equilibria of elastic torus knots made of a single thin, uniform, homogeneous, isotropic, inextensible, unshearable rod of circular cross-section. The theory is formulated as a special case of an elastic theory of geometrically exact braids consisting of two rods winding around each other while remaining at constant distance. We introduce braid strains in terms of which we formulate a second-order variational problem for an action functional that is the sum of the rod elastic energies and constraint terms related to the inextensibility of the rods. The Euler-Lagrange equations for this problem, partly in Euler-Poincare form, yield a compact system of ODEs suitable for numerical solution. By solving an appropriate boundary- value problem for these equations we study knot equilibria as the dimensionless ropelength parameter is varied. We are particularly interested in the approach of the purely geometrical ideal (tightest) limit. For the trefoil knot the tightest shape we could get has a ropelength of 32.85560666, which is remarkably close to the best current estimate. For the pentafoil we find a symmetry-breaking bifurcation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/544/1/012007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2014-10, Vol.544 (1), p.12007-10
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718952163
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Boundary value problems
Braiding
Broken symmetry
Constants
Euler-Lagrange equation
Knots
Mathematical analysis
Mathematical models
Physics
Rods
Tightening
Toruses
title Tightening elastic ( n , 2)-torus knots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightening%20elastic%20(%20n%20,%202)-torus%20knots&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Starostin,%20E%20L&rft.date=2014-10-20&rft.volume=544&rft.issue=1&rft.spage=12007&rft.epage=10&rft.pages=12007-10&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/544/1/012007&rft_dat=%3Cproquest_cross%3E2576732543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2797-131d79f6168ce4be025909a079d13c17f38fa03ae23a61f61a4b12e6ddc6f0bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576732543&rft_id=info:pmid/&rfr_iscdi=true