Loading…
Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials
An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene...
Saved in:
Published in: | Carbon (New York) 2015-05, Vol.86, p.86-97 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93 |
container_end_page | 97 |
container_issue | |
container_start_page | 86 |
container_title | Carbon (New York) |
container_volume | 86 |
creator | Ye, Y.S. Wang, H. Bi, S.G. Xue, Y. Xue, Z.G. Liao, Y.G. Zhou, X.P. Xie, X.L. Mai, Y.W. |
description | An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications. |
doi_str_mv | 10.1016/j.carbon.2015.01.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718955640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622315000330</els_id><sourcerecordid>1718955640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPOTopWvStGl6EWRZP0DwsveQplPN0ia7SSqsJw_-A_-hv8Qs9eBJGOYxM28eMw-hS0oWlFB-vVlo5RtnFzmh5YLQFPwIzaioWMZETY_RjBAiMp7n7BSdhbBJZSFoMUOfK_uqrIYWG2dx9MqGrfMRG4u3rt8P4L8_vtLIaNyb3WhaDD3o6NMsQsDa2aiMNfYF_yVl3Wh1TB3Vm_ekbZV1IfpRx9GncroWDyqCN6oP5-ikSwAXvzhH67vVevmQPT3fPy5vnzLNBIkZMC2gY6RRRULdtiWpq5rrthG8bAWpeJcr3lQi5bKgVDDGgdTQcNLxpmZzdDXJbr3bjRCiHEzQ0PfKghuDpBUVdVnygiRqMVG1dyF46OTWm0H5vaREHjyXGzl9IQ-eS0JT8LR2M61B-uLNgJdBGzjYa3xyTbbO_C_wA5nrkf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718955640</pqid></control><display><type>article</type><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><source>ScienceDirect Journals</source><creator>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</creator><creatorcontrib>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</creatorcontrib><description>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2015.01.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; Electrolytes ; Graphene ; Ion transport ; Ionic conductivity ; Liquids ; Nanostructure ; Polymer matrix composites</subject><ispartof>Carbon (New York), 2015-05, Vol.86, p.86-97</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</citedby><cites>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Y.S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Bi, S.G.</creatorcontrib><creatorcontrib>Xue, Y.</creatorcontrib><creatorcontrib>Xue, Z.G.</creatorcontrib><creatorcontrib>Liao, Y.G.</creatorcontrib><creatorcontrib>Zhou, X.P.</creatorcontrib><creatorcontrib>Xie, X.L.</creatorcontrib><creatorcontrib>Mai, Y.W.</creatorcontrib><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><title>Carbon (New York)</title><description>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</description><subject>Carbon</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Ion transport</subject><subject>Ionic conductivity</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Polymer matrix composites</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPOTopWvStGl6EWRZP0DwsveQplPN0ia7SSqsJw_-A_-hv8Qs9eBJGOYxM28eMw-hS0oWlFB-vVlo5RtnFzmh5YLQFPwIzaioWMZETY_RjBAiMp7n7BSdhbBJZSFoMUOfK_uqrIYWG2dx9MqGrfMRG4u3rt8P4L8_vtLIaNyb3WhaDD3o6NMsQsDa2aiMNfYF_yVl3Wh1TB3Vm_ekbZV1IfpRx9GncroWDyqCN6oP5-ikSwAXvzhH67vVevmQPT3fPy5vnzLNBIkZMC2gY6RRRULdtiWpq5rrthG8bAWpeJcr3lQi5bKgVDDGgdTQcNLxpmZzdDXJbr3bjRCiHEzQ0PfKghuDpBUVdVnygiRqMVG1dyF46OTWm0H5vaREHjyXGzl9IQ-eS0JT8LR2M61B-uLNgJdBGzjYa3xyTbbO_C_wA5nrkf8</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ye, Y.S.</creator><creator>Wang, H.</creator><creator>Bi, S.G.</creator><creator>Xue, Y.</creator><creator>Xue, Z.G.</creator><creator>Liao, Y.G.</creator><creator>Zhou, X.P.</creator><creator>Xie, X.L.</creator><creator>Mai, Y.W.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150501</creationdate><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><author>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Ion transport</topic><topic>Ionic conductivity</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Polymer matrix composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Y.S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Bi, S.G.</creatorcontrib><creatorcontrib>Xue, Y.</creatorcontrib><creatorcontrib>Xue, Z.G.</creatorcontrib><creatorcontrib>Liao, Y.G.</creatorcontrib><creatorcontrib>Zhou, X.P.</creatorcontrib><creatorcontrib>Xie, X.L.</creatorcontrib><creatorcontrib>Mai, Y.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Y.S.</au><au>Wang, H.</au><au>Bi, S.G.</au><au>Xue, Y.</au><au>Xue, Z.G.</au><au>Liao, Y.G.</au><au>Zhou, X.P.</au><au>Xie, X.L.</au><au>Mai, Y.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</atitle><jtitle>Carbon (New York)</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>86</volume><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2015.01.016</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2015-05, Vol.86, p.86-97 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718955640 |
source | ScienceDirect Journals |
subjects | Carbon Electrolytes Graphene Ion transport Ionic conductivity Liquids Nanostructure Polymer matrix composites |
title | Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ion%20transport%20in%20polymer%E2%80%93ionic%20liquid%20electrolytes%20containing%20ionic%20liquid-functionalized%20nanostructured%20carbon%20materials&rft.jtitle=Carbon%20(New%20York)&rft.au=Ye,%20Y.S.&rft.date=2015-05-01&rft.volume=86&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2015.01.016&rft_dat=%3Cproquest_cross%3E1718955640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718955640&rft_id=info:pmid/&rfr_iscdi=true |