Loading…

Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials

An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2015-05, Vol.86, p.86-97
Main Authors: Ye, Y.S., Wang, H., Bi, S.G., Xue, Y., Xue, Z.G., Liao, Y.G., Zhou, X.P., Xie, X.L., Mai, Y.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93
cites cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93
container_end_page 97
container_issue
container_start_page 86
container_title Carbon (New York)
container_volume 86
creator Ye, Y.S.
Wang, H.
Bi, S.G.
Xue, Y.
Xue, Z.G.
Liao, Y.G.
Zhou, X.P.
Xie, X.L.
Mai, Y.W.
description An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.
doi_str_mv 10.1016/j.carbon.2015.01.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718955640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622315000330</els_id><sourcerecordid>1718955640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPOTopWvStGl6EWRZP0DwsveQplPN0ia7SSqsJw_-A_-hv8Qs9eBJGOYxM28eMw-hS0oWlFB-vVlo5RtnFzmh5YLQFPwIzaioWMZETY_RjBAiMp7n7BSdhbBJZSFoMUOfK_uqrIYWG2dx9MqGrfMRG4u3rt8P4L8_vtLIaNyb3WhaDD3o6NMsQsDa2aiMNfYF_yVl3Wh1TB3Vm_ekbZV1IfpRx9GncroWDyqCN6oP5-ikSwAXvzhH67vVevmQPT3fPy5vnzLNBIkZMC2gY6RRRULdtiWpq5rrthG8bAWpeJcr3lQi5bKgVDDGgdTQcNLxpmZzdDXJbr3bjRCiHEzQ0PfKghuDpBUVdVnygiRqMVG1dyF46OTWm0H5vaREHjyXGzl9IQ-eS0JT8LR2M61B-uLNgJdBGzjYa3xyTbbO_C_wA5nrkf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718955640</pqid></control><display><type>article</type><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><source>ScienceDirect Journals</source><creator>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</creator><creatorcontrib>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</creatorcontrib><description>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2015.01.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; Electrolytes ; Graphene ; Ion transport ; Ionic conductivity ; Liquids ; Nanostructure ; Polymer matrix composites</subject><ispartof>Carbon (New York), 2015-05, Vol.86, p.86-97</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</citedby><cites>FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Y.S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Bi, S.G.</creatorcontrib><creatorcontrib>Xue, Y.</creatorcontrib><creatorcontrib>Xue, Z.G.</creatorcontrib><creatorcontrib>Liao, Y.G.</creatorcontrib><creatorcontrib>Zhou, X.P.</creatorcontrib><creatorcontrib>Xie, X.L.</creatorcontrib><creatorcontrib>Mai, Y.W.</creatorcontrib><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><title>Carbon (New York)</title><description>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</description><subject>Carbon</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Ion transport</subject><subject>Ionic conductivity</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Polymer matrix composites</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPOTopWvStGl6EWRZP0DwsveQplPN0ia7SSqsJw_-A_-hv8Qs9eBJGOYxM28eMw-hS0oWlFB-vVlo5RtnFzmh5YLQFPwIzaioWMZETY_RjBAiMp7n7BSdhbBJZSFoMUOfK_uqrIYWG2dx9MqGrfMRG4u3rt8P4L8_vtLIaNyb3WhaDD3o6NMsQsDa2aiMNfYF_yVl3Wh1TB3Vm_ekbZV1IfpRx9GncroWDyqCN6oP5-ikSwAXvzhH67vVevmQPT3fPy5vnzLNBIkZMC2gY6RRRULdtiWpq5rrthG8bAWpeJcr3lQi5bKgVDDGgdTQcNLxpmZzdDXJbr3bjRCiHEzQ0PfKghuDpBUVdVnygiRqMVG1dyF46OTWm0H5vaREHjyXGzl9IQ-eS0JT8LR2M61B-uLNgJdBGzjYa3xyTbbO_C_wA5nrkf8</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ye, Y.S.</creator><creator>Wang, H.</creator><creator>Bi, S.G.</creator><creator>Xue, Y.</creator><creator>Xue, Z.G.</creator><creator>Liao, Y.G.</creator><creator>Zhou, X.P.</creator><creator>Xie, X.L.</creator><creator>Mai, Y.W.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150501</creationdate><title>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</title><author>Ye, Y.S. ; Wang, H. ; Bi, S.G. ; Xue, Y. ; Xue, Z.G. ; Liao, Y.G. ; Zhou, X.P. ; Xie, X.L. ; Mai, Y.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Ion transport</topic><topic>Ionic conductivity</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Polymer matrix composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Y.S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Bi, S.G.</creatorcontrib><creatorcontrib>Xue, Y.</creatorcontrib><creatorcontrib>Xue, Z.G.</creatorcontrib><creatorcontrib>Liao, Y.G.</creatorcontrib><creatorcontrib>Zhou, X.P.</creatorcontrib><creatorcontrib>Xie, X.L.</creatorcontrib><creatorcontrib>Mai, Y.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Y.S.</au><au>Wang, H.</au><au>Bi, S.G.</au><au>Xue, Y.</au><au>Xue, Z.G.</au><au>Liao, Y.G.</au><au>Zhou, X.P.</au><au>Xie, X.L.</au><au>Mai, Y.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials</atitle><jtitle>Carbon (New York)</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>86</volume><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>An effective chemical strategy for the synthesis of polymer–ionic liquid (IL) electrolytes with ion-conducting channels, physically modulated by variously dimensioned IL-functionalized carbon materials (IL-FCMs) including carbon black (CB), multi-walled carbon nanotubes (MWCNT) and reduced graphene oxide sheets (RGO) is reported, enabling a fundamental understanding of the relationship between carbon structures and ion transport behavior. The risk of electrical shorts is eliminated by the presence of IL groups on the surfaces of CMs and only minimal amounts of the IL-FCMs (⩽1.0wt.%) in the polymer/IL composite electrolytes (e.g., polymer matrix filled with 1.0wt.% IL-FCMs has a conductivity of ∼10−7Scm−1 at 100°C). Increase in ion transport within the reorganized ion channels of the composite polymer electrolytes (CPEs) is confirmed by the enhanced ionic conductivity and low activation energy for through-plane and in-plane ionic conduction at different temperature (40–160°C). Maximum improvement in the ionic conductivity (150–300% at 100°C) can be achieved by optimizing the carbon structure and the loading ratio, which leads to highly ionic conductive polymer/IL composite electrolytes for practical applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2015.01.016</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2015-05, Vol.86, p.86-97
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1718955640
source ScienceDirect Journals
subjects Carbon
Electrolytes
Graphene
Ion transport
Ionic conductivity
Liquids
Nanostructure
Polymer matrix composites
title Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ion%20transport%20in%20polymer%E2%80%93ionic%20liquid%20electrolytes%20containing%20ionic%20liquid-functionalized%20nanostructured%20carbon%20materials&rft.jtitle=Carbon%20(New%20York)&rft.au=Ye,%20Y.S.&rft.date=2015-05-01&rft.volume=86&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2015.01.016&rft_dat=%3Cproquest_cross%3E1718955640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-e3c8ef30ba48efcdd509796cdb865d8076f2a6b782a654118336e09eb60f6b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718955640&rft_id=info:pmid/&rfr_iscdi=true