Loading…

Super Resolution Reconstruction in Mixed Noise Environment

A hybrid Super Resolution (SR) algorithm is proposed to deal with the Low Resolution (LR) images degraded by Mixed (Gaussian + Impulse) noise. The algorithm adaptively estimates and removes the impulse noise from the input LR images based on edge, geometrical & size characteristics. The fuzzy ba...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2015-01, Vol.121 (12), p.33-41
Main Authors: Devi, A Geetha, Madhu, T, Kishore, K Lal
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 41
container_issue 12
container_start_page 33
container_title International journal of computer applications
container_volume 121
creator Devi, A Geetha
Madhu, T
Kishore, K Lal
description A hybrid Super Resolution (SR) algorithm is proposed to deal with the Low Resolution (LR) images degraded by Mixed (Gaussian + Impulse) noise. The algorithm adaptively estimates and removes the impulse noise from the input LR images based on edge, geometrical & size characteristics. The fuzzy based impulse noise removal algorithm is along with adaptive sharpening filter based SR using steering kernel regression are used to obtain a HR image. The experimental results confirm the efficacy of the algorithm for different types of images at various noise densities.
doi_str_mv 10.5120/21594-4689
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718957724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3754429201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1329-702edd99c10a7d9fccb64fd786fefce577a5c0f17872a84a77b4990e164450043</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouKx78RcUvIhQTdK0k3iTZf2AVcGPc8imU8jSTdakFf33trsexLnMO_DwMjyEnDJ6WTJOrzgrlchFJdUBmVAFZS6lhMM_-ZjMUlrTYQrFKyUm5Pq132LMXjCFtu9c8EO0wacu9nZ3Op89ui-ss6fgEmYL_-li8Bv03Qk5akybcPa7p-T9dvE2v8-Xz3cP85tlblnBVQ6UY10rZRk1UKvG2lUlmhpk1WBjsQQwpaUNAwncSGEAVkIpiqwSoqRUFFNyvu_dxvDRY-r0xiWLbWs8hj5pBkyqoYaP6Nk_dB366IfvNKuUFAyUhIG62FM2hpQiNnob3cbEb82oHk3qnUk9mix-AI1sY8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698417987</pqid></control><display><type>article</type><title>Super Resolution Reconstruction in Mixed Noise Environment</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Devi, A Geetha ; Madhu, T ; Kishore, K Lal</creator><creatorcontrib>Devi, A Geetha ; Madhu, T ; Kishore, K Lal</creatorcontrib><description>A hybrid Super Resolution (SR) algorithm is proposed to deal with the Low Resolution (LR) images degraded by Mixed (Gaussian + Impulse) noise. The algorithm adaptively estimates and removes the impulse noise from the input LR images based on edge, geometrical &amp; size characteristics. The fuzzy based impulse noise removal algorithm is along with adaptive sharpening filter based SR using steering kernel regression are used to obtain a HR image. The experimental results confirm the efficacy of the algorithm for different types of images at various noise densities.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/21594-4689</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Density ; Fuzzy ; Impulses ; Noise ; Reconstruction ; Regression</subject><ispartof>International journal of computer applications, 2015-01, Vol.121 (12), p.33-41</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devi, A Geetha</creatorcontrib><creatorcontrib>Madhu, T</creatorcontrib><creatorcontrib>Kishore, K Lal</creatorcontrib><title>Super Resolution Reconstruction in Mixed Noise Environment</title><title>International journal of computer applications</title><description>A hybrid Super Resolution (SR) algorithm is proposed to deal with the Low Resolution (LR) images degraded by Mixed (Gaussian + Impulse) noise. The algorithm adaptively estimates and removes the impulse noise from the input LR images based on edge, geometrical &amp; size characteristics. The fuzzy based impulse noise removal algorithm is along with adaptive sharpening filter based SR using steering kernel regression are used to obtain a HR image. The experimental results confirm the efficacy of the algorithm for different types of images at various noise densities.</description><subject>Algorithms</subject><subject>Density</subject><subject>Fuzzy</subject><subject>Impulses</subject><subject>Noise</subject><subject>Reconstruction</subject><subject>Regression</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouKx78RcUvIhQTdK0k3iTZf2AVcGPc8imU8jSTdakFf33trsexLnMO_DwMjyEnDJ6WTJOrzgrlchFJdUBmVAFZS6lhMM_-ZjMUlrTYQrFKyUm5Pq132LMXjCFtu9c8EO0wacu9nZ3Op89ui-ss6fgEmYL_-li8Bv03Qk5akybcPa7p-T9dvE2v8-Xz3cP85tlblnBVQ6UY10rZRk1UKvG2lUlmhpk1WBjsQQwpaUNAwncSGEAVkIpiqwSoqRUFFNyvu_dxvDRY-r0xiWLbWs8hj5pBkyqoYaP6Nk_dB366IfvNKuUFAyUhIG62FM2hpQiNnob3cbEb82oHk3qnUk9mix-AI1sY8w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Devi, A Geetha</creator><creator>Madhu, T</creator><creator>Kishore, K Lal</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Super Resolution Reconstruction in Mixed Noise Environment</title><author>Devi, A Geetha ; Madhu, T ; Kishore, K Lal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1329-702edd99c10a7d9fccb64fd786fefce577a5c0f17872a84a77b4990e164450043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Fuzzy</topic><topic>Impulses</topic><topic>Noise</topic><topic>Reconstruction</topic><topic>Regression</topic><toplevel>online_resources</toplevel><creatorcontrib>Devi, A Geetha</creatorcontrib><creatorcontrib>Madhu, T</creatorcontrib><creatorcontrib>Kishore, K Lal</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, A Geetha</au><au>Madhu, T</au><au>Kishore, K Lal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Resolution Reconstruction in Mixed Noise Environment</atitle><jtitle>International journal of computer applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>121</volume><issue>12</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>A hybrid Super Resolution (SR) algorithm is proposed to deal with the Low Resolution (LR) images degraded by Mixed (Gaussian + Impulse) noise. The algorithm adaptively estimates and removes the impulse noise from the input LR images based on edge, geometrical &amp; size characteristics. The fuzzy based impulse noise removal algorithm is along with adaptive sharpening filter based SR using steering kernel regression are used to obtain a HR image. The experimental results confirm the efficacy of the algorithm for different types of images at various noise densities.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/21594-4689</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2015-01, Vol.121 (12), p.33-41
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1718957724
source Freely Accessible Science Journals - check A-Z of ejournals
subjects Algorithms
Density
Fuzzy
Impulses
Noise
Reconstruction
Regression
title Super Resolution Reconstruction in Mixed Noise Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T00%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Resolution%20Reconstruction%20in%20Mixed%20Noise%20Environment&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Devi,%20A%20Geetha&rft.date=2015-01-01&rft.volume=121&rft.issue=12&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/21594-4689&rft_dat=%3Cproquest_cross%3E3754429201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1329-702edd99c10a7d9fccb64fd786fefce577a5c0f17872a84a77b4990e164450043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1698417987&rft_id=info:pmid/&rfr_iscdi=true