Loading…

Pap Smear Images Classification for Early Detection of Cervical Cancer

In this presents the analyses of the Pap smear cervical cell images for cervical screening and detection. Initially preprocessed the cell images to remove unwanted noises, Followed by extraction of the cell from the background to obtain the cytoplasm and nucleus of the cell which is the region of in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2015-01, Vol.118 (7), p.10-16
Main Authors: Mbaga, Ayubu Hassan, Zhijun, Pei
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1739-334c34fe329c8af25c91127e10e1f3a8a52800d44dc44e8b1253c80bd169c6ba3
cites
container_end_page 16
container_issue 7
container_start_page 10
container_title International journal of computer applications
container_volume 118
creator Mbaga, Ayubu Hassan
Zhijun, Pei
description In this presents the analyses of the Pap smear cervical cell images for cervical screening and detection. Initially preprocessed the cell images to remove unwanted noises, Followed by extraction of the cell from the background to obtain the cytoplasm and nucleus of the cell which is the region of interest. It is the only parts of the cell which can be used to differentiate normal cell from abnormal one. 20 salient features were extracted for training of support vector machine. SVM-RFE is used for features selection; the RFE algorithm removes unimportant features based on backward sequential selection by iteratively deleting one feature at a time, resulting in suboptimal combination of r(r
doi_str_mv 10.5120/20756-3159
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718957981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3748801751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1739-334c34fe329c8af25c91127e10e1f3a8a52800d44dc44e8b1253c80bd169c6ba3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWM_nYJEdZWy0UFNRzSNOJbNmPmrSC_95t60GcywwvDy_DQ8glsFsFnN1xplVZCFD2hIyY1aowxujTP_c5meS8ZsMIy0srR2T24jf0tUWf6Lz1H5hp1fic61gHv637jsY-0alPzTd9wC2GQ9ZHWmH6GpCGVr4LmC7IWfRNxsnvHpP32fSteioWz4_z6n5RBNDCFkLIIGREwW0wPnIVLADXCAwhCm-84oaxlZSrICWaJXAlgmHLFZQ2lEsvxuT62LtJ_ecO89a1dQ7YNL7DfpcdaDBWaWtgQK_-oet-l7rhOze0aWmkVOVA3RypkPqcE0a3SXXr07cD5vZW3cGq21sVP3TIZoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697484456</pqid></control><display><type>article</type><title>Pap Smear Images Classification for Early Detection of Cervical Cancer</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Mbaga, Ayubu Hassan ; Zhijun, Pei</creator><creatorcontrib>Mbaga, Ayubu Hassan ; Zhijun, Pei</creatorcontrib><description>In this presents the analyses of the Pap smear cervical cell images for cervical screening and detection. Initially preprocessed the cell images to remove unwanted noises, Followed by extraction of the cell from the background to obtain the cytoplasm and nucleus of the cell which is the region of interest. It is the only parts of the cell which can be used to differentiate normal cell from abnormal one. 20 salient features were extracted for training of support vector machine. SVM-RFE is used for features selection; the RFE algorithm removes unimportant features based on backward sequential selection by iteratively deleting one feature at a time, resulting in suboptimal combination of r(r</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/20756-3159</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Background noise ; Cervical cancer ; Feature extraction ; Image classification ; Image detection ; Screening ; Smear ; Support vector machines</subject><ispartof>International journal of computer applications, 2015-01, Vol.118 (7), p.10-16</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1739-334c34fe329c8af25c91127e10e1f3a8a52800d44dc44e8b1253c80bd169c6ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mbaga, Ayubu Hassan</creatorcontrib><creatorcontrib>Zhijun, Pei</creatorcontrib><title>Pap Smear Images Classification for Early Detection of Cervical Cancer</title><title>International journal of computer applications</title><description>In this presents the analyses of the Pap smear cervical cell images for cervical screening and detection. Initially preprocessed the cell images to remove unwanted noises, Followed by extraction of the cell from the background to obtain the cytoplasm and nucleus of the cell which is the region of interest. It is the only parts of the cell which can be used to differentiate normal cell from abnormal one. 20 salient features were extracted for training of support vector machine. SVM-RFE is used for features selection; the RFE algorithm removes unimportant features based on backward sequential selection by iteratively deleting one feature at a time, resulting in suboptimal combination of r(r</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Cervical cancer</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Screening</subject><subject>Smear</subject><subject>Support vector machines</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWM_nYJEdZWy0UFNRzSNOJbNmPmrSC_95t60GcywwvDy_DQ8glsFsFnN1xplVZCFD2hIyY1aowxujTP_c5meS8ZsMIy0srR2T24jf0tUWf6Lz1H5hp1fic61gHv637jsY-0alPzTd9wC2GQ9ZHWmH6GpCGVr4LmC7IWfRNxsnvHpP32fSteioWz4_z6n5RBNDCFkLIIGREwW0wPnIVLADXCAwhCm-84oaxlZSrICWaJXAlgmHLFZQ2lEsvxuT62LtJ_ecO89a1dQ7YNL7DfpcdaDBWaWtgQK_-oet-l7rhOze0aWmkVOVA3RypkPqcE0a3SXXr07cD5vZW3cGq21sVP3TIZoo</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Mbaga, Ayubu Hassan</creator><creator>Zhijun, Pei</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Pap Smear Images Classification for Early Detection of Cervical Cancer</title><author>Mbaga, Ayubu Hassan ; Zhijun, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1739-334c34fe329c8af25c91127e10e1f3a8a52800d44dc44e8b1253c80bd169c6ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Cervical cancer</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Screening</topic><topic>Smear</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Mbaga, Ayubu Hassan</creatorcontrib><creatorcontrib>Zhijun, Pei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mbaga, Ayubu Hassan</au><au>Zhijun, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pap Smear Images Classification for Early Detection of Cervical Cancer</atitle><jtitle>International journal of computer applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>118</volume><issue>7</issue><spage>10</spage><epage>16</epage><pages>10-16</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this presents the analyses of the Pap smear cervical cell images for cervical screening and detection. Initially preprocessed the cell images to remove unwanted noises, Followed by extraction of the cell from the background to obtain the cytoplasm and nucleus of the cell which is the region of interest. It is the only parts of the cell which can be used to differentiate normal cell from abnormal one. 20 salient features were extracted for training of support vector machine. SVM-RFE is used for features selection; the RFE algorithm removes unimportant features based on backward sequential selection by iteratively deleting one feature at a time, resulting in suboptimal combination of r(r</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/20756-3159</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2015-01, Vol.118 (7), p.10-16
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1718957981
source Freely Accessible Science Journals - check A-Z of ejournals
subjects Algorithms
Background noise
Cervical cancer
Feature extraction
Image classification
Image detection
Screening
Smear
Support vector machines
title Pap Smear Images Classification for Early Detection of Cervical Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pap%20Smear%20Images%20Classification%20for%20Early%20Detection%20of%20Cervical%20Cancer&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Mbaga,%20Ayubu%20Hassan&rft.date=2015-01-01&rft.volume=118&rft.issue=7&rft.spage=10&rft.epage=16&rft.pages=10-16&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/20756-3159&rft_dat=%3Cproquest_cross%3E3748801751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1739-334c34fe329c8af25c91127e10e1f3a8a52800d44dc44e8b1253c80bd169c6ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697484456&rft_id=info:pmid/&rfr_iscdi=true