Loading…
A fluorescent probe for ecstasy
A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2015-08, Vol.51 (64), p.12799-12802 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c5cc04760a |