Loading…

Fault diagnosis of rolling bearing based on empirical mode decomposition and higher order statistics

In order to solve the problem of the faulted rolling bearing signal getting easily affected by Gaussian noise, a new fault diagnosis method was proposed based on empirical mode decomposition and high-order statistics. Firstly, the vibration signal was decomposed by empirical mode decomposition and t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2015-06, Vol.229 (9), p.1630-1638
Main Author: Cai, Jian-hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to solve the problem of the faulted rolling bearing signal getting easily affected by Gaussian noise, a new fault diagnosis method was proposed based on empirical mode decomposition and high-order statistics. Firstly, the vibration signal was decomposed by empirical mode decomposition and the correlation coefficient of each intrinsic mode function was calculated. These intrinsic mode function components, which have a big correlation coefficient, were selected to estimate its higher order spectrum. Then based on the higher order statistics theory, this method uses higher order spectrum of each intrinsic mode function to reconstruct its power spectrum. And these power spectrums were summed to obtain the primary power spectrum of bearing signal. Finally, fault feature information was extracted from the reconstructed power spectrum. A model, using higher order spectrum to reconstruct power spectrum, was established. Meanwhile, analysis was conducted by using the simulated data and the recorded vibration signals which include inner race, out race, and bearing ball fault signal. Results show that the presented method is superior to traditional power spectrum method in suppressing Gaussian noise and its resolution is higher. New method can extract more useful information compared to the traditional method.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406214545820