Loading…
Analysis of Machine Learning Techniques for Intrusion Detection System: A Review
Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from ne...
Saved in:
Published in: | International journal of computer applications 2015-01, Vol.119 (3), p.19-29 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 29 |
container_issue | 3 |
container_start_page | 19 |
container_title | International journal of computer applications |
container_volume | 119 |
creator | AliShah, Asghar Sikander Hayat Khiyal, Malik Daud Awan, Muhammad |
description | Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from network based and host based attacks. Various Machine learning techniques are used in IDS. This study analyzes machine learning techniques in IDS. It also reviews many related studies done in the period from 2000 to 2012 and it focuses on machine learning techniques. Related studies include single, hybrid, ensemble classifiers, baseline and datasets used. |
doi_str_mv | 10.5120/21047-3678 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718958480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718958480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1328-e75419fc9df747eb7415dd0c36360dae997f6b00f055f6e13945f60d84602d393</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWk002H95K_SpUFK3nZZud2JQ2W5Ndpf_erPUgzuWdw8PLzIPQKSWXBc3JVU4JlxkTUh2gAdGyyJRS8vDPfoxGMa5IGqZzofkAPY99td5FF3Fj8WNlls4DnkEVvPPveA5m6d1HBxHbJuCpb0MXXePxDbRg2n573cUWNtd4jF_g08HXCTqy1TrC6DeH6O3udj55yGZP99PJeJYZynKVgSw41dbo2kouYSE5LeqaGCaYIHUFWksrFoRYUhRWAGWapyS14oLkNdNsiM73vdvQ9Ae25cZFA-t15aHpYkklVbpQXJGEnv1DV00X0t-JEklNKmcyURd7yoQmxgC23Aa3qcKupKTs_ZY_fsveL_sGukBqaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697513937</pqid></control><display><type>article</type><title>Analysis of Machine Learning Techniques for Intrusion Detection System: A Review</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>AliShah, Asghar ; Sikander Hayat Khiyal, Malik ; Daud Awan, Muhammad</creator><creatorcontrib>AliShah, Asghar ; Sikander Hayat Khiyal, Malik ; Daud Awan, Muhammad</creatorcontrib><description>Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from network based and host based attacks. Various Machine learning techniques are used in IDS. This study analyzes machine learning techniques in IDS. It also reviews many related studies done in the period from 2000 to 2012 and it focuses on machine learning techniques. Related studies include single, hybrid, ensemble classifiers, baseline and datasets used.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/21047-3678</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Classifiers ; Computer information security ; Computer networks ; Intrusion ; Machine learning ; Networks</subject><ispartof>International journal of computer applications, 2015-01, Vol.119 (3), p.19-29</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>AliShah, Asghar</creatorcontrib><creatorcontrib>Sikander Hayat Khiyal, Malik</creatorcontrib><creatorcontrib>Daud Awan, Muhammad</creatorcontrib><title>Analysis of Machine Learning Techniques for Intrusion Detection System: A Review</title><title>International journal of computer applications</title><description>Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from network based and host based attacks. Various Machine learning techniques are used in IDS. This study analyzes machine learning techniques in IDS. It also reviews many related studies done in the period from 2000 to 2012 and it focuses on machine learning techniques. Related studies include single, hybrid, ensemble classifiers, baseline and datasets used.</description><subject>Classifiers</subject><subject>Computer information security</subject><subject>Computer networks</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Networks</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWk002H95K_SpUFK3nZZud2JQ2W5Ndpf_erPUgzuWdw8PLzIPQKSWXBc3JVU4JlxkTUh2gAdGyyJRS8vDPfoxGMa5IGqZzofkAPY99td5FF3Fj8WNlls4DnkEVvPPveA5m6d1HBxHbJuCpb0MXXePxDbRg2n573cUWNtd4jF_g08HXCTqy1TrC6DeH6O3udj55yGZP99PJeJYZynKVgSw41dbo2kouYSE5LeqaGCaYIHUFWksrFoRYUhRWAGWapyS14oLkNdNsiM73vdvQ9Ae25cZFA-t15aHpYkklVbpQXJGEnv1DV00X0t-JEklNKmcyURd7yoQmxgC23Aa3qcKupKTs_ZY_fsveL_sGukBqaQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>AliShah, Asghar</creator><creator>Sikander Hayat Khiyal, Malik</creator><creator>Daud Awan, Muhammad</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>Analysis of Machine Learning Techniques for Intrusion Detection System: A Review</title><author>AliShah, Asghar ; Sikander Hayat Khiyal, Malik ; Daud Awan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1328-e75419fc9df747eb7415dd0c36360dae997f6b00f055f6e13945f60d84602d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classifiers</topic><topic>Computer information security</topic><topic>Computer networks</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>AliShah, Asghar</creatorcontrib><creatorcontrib>Sikander Hayat Khiyal, Malik</creatorcontrib><creatorcontrib>Daud Awan, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AliShah, Asghar</au><au>Sikander Hayat Khiyal, Malik</au><au>Daud Awan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Machine Learning Techniques for Intrusion Detection System: A Review</atitle><jtitle>International journal of computer applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>119</volume><issue>3</issue><spage>19</spage><epage>29</epage><pages>19-29</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Security is a key issue to both computer and computer networks. Intrusion detection System (IDS) is one of the major research problems in network security. IDSs are developed to detect both known and unknown attacks. There are many techniques used in IDS for protecting computers and networks from network based and host based attacks. Various Machine learning techniques are used in IDS. This study analyzes machine learning techniques in IDS. It also reviews many related studies done in the period from 2000 to 2012 and it focuses on machine learning techniques. Related studies include single, hybrid, ensemble classifiers, baseline and datasets used.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/21047-3678</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2015-01, Vol.119 (3), p.19-29 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718958480 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
subjects | Classifiers Computer information security Computer networks Intrusion Machine learning Networks |
title | Analysis of Machine Learning Techniques for Intrusion Detection System: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Machine%20Learning%20Techniques%20for%20Intrusion%20Detection%20System:%20A%20Review&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=AliShah,%20Asghar&rft.date=2015-01-01&rft.volume=119&rft.issue=3&rft.spage=19&rft.epage=29&rft.pages=19-29&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/21047-3678&rft_dat=%3Cproquest_cross%3E1718958480%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1328-e75419fc9df747eb7415dd0c36360dae997f6b00f055f6e13945f60d84602d393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697513937&rft_id=info:pmid/&rfr_iscdi=true |