Loading…

Global gyrokinetic ion temperature gradient turbulence simulations of ITER

Global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence in an ideal MHD ITER equilibrium plasma are performed with the ORB5 code. The noise control and field-aligned Fourier filtering procedures implemented in ORB5 are essential in obtaining numerically healthy results wit...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2013-07, Vol.55 (7), p.74017-8
Main Authors: Villard, L, Angelino, P, Bottino, A, Brunner, S, Jolliet, S, McMillan, B F, Tran, T M, Vernay, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence in an ideal MHD ITER equilibrium plasma are performed with the ORB5 code. The noise control and field-aligned Fourier filtering procedures implemented in ORB5 are essential in obtaining numerically healthy results with a reasonable amount of computational effort: typical simulations require 109 grid points, 109 particles and, despite a particle per cell ratio of unity, achieve a signal to noise ratio larger than 50. As compared with a circular concentric configuration with otherwise similar parameters (same ρ* = 1/720), the effective heat diffusivity is considerably reduced for the ITER MHD equilibrium. A self-organized radial structure appears, with long-lived zonal flows (ZF), modulating turbulence heat transport and resulting in a corrugated temperature gradient profile. The ratio of long-lived ZF to the fluctuating ZF is markedly higher for the ITER MHD equilibrium as compared with circular configurations, thereby producing a more effective ITG turbulence suppression, in spite of a higher linear growth rate. As a result, the nonlinear critical temperature gradient, R/LTcrit,NL, is about twice the linear critical temperature gradient, R/LTcrit,lin. Moreover, the heat transport stiffness above the nonlinear threshold is considerably reduced as compared with circular cases. Plasma elongation is probably one of the essential causes of this behaviour: indeed, undamped ZF residual levels and geodesic acoustic mode damping are both increasing with elongation. Other possible causes of the difference, such as magnetic shear profile effects, are also investigated.
ISSN:0741-3335
1361-6587
DOI:10.1088/0741-3335/55/7/074017