Loading…
Effects of Ohmic and ambipolar diffusion on formation and evolution of first cores, protostars, and circumstellar discs
We investigate the formation and evolution of a first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the f...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2015-09, Vol.452 (1), p.278-288 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the formation and evolution of a first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the first-core phase and that the plasma β of the centre of the first core becomes large, β > 104. Thus, proper treatment of first-core phase is crucial in investigating the formation of protostar and disc. On the other hand, in an ideal simulation, β ∼ 10 at the centre of the first core. The simulations with magnetic diffusion show that the circumstellar disc forms at almost the same time of protostar formation even with a relatively strong initial magnetic field (the value for the initial mass-to-flux ratio of the cloud core relative to the critical value is μ = 4). The disc has a radius of r ∼ 1 AU at the protostar formation epoch. We confirm that the disc is rotationally supported. We also show that the disc is massive (Q ∼ 1) and that gravitational instability may play an important role in the subsequent disc evolution. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv1290 |