Loading…

Effects of Ohmic and ambipolar diffusion on formation and evolution of first cores, protostars, and circumstellar discs

We investigate the formation and evolution of a first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the f...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2015-09, Vol.452 (1), p.278-288
Main Authors: Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., Inutsuka, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the formation and evolution of a first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the first-core phase and that the plasma β of the centre of the first core becomes large, β > 104. Thus, proper treatment of first-core phase is crucial in investigating the formation of protostar and disc. On the other hand, in an ideal simulation, β ∼ 10 at the centre of the first core. The simulations with magnetic diffusion show that the circumstellar disc forms at almost the same time of protostar formation even with a relatively strong initial magnetic field (the value for the initial mass-to-flux ratio of the cloud core relative to the critical value is μ = 4). The disc has a radius of r ∼ 1 AU at the protostar formation epoch. We confirm that the disc is rotationally supported. We also show that the disc is massive (Q ∼ 1) and that gravitational instability may play an important role in the subsequent disc evolution.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv1290