Loading…

Two highly singular intermittent structures: Rain and turbulence

Rainfall charges soil moisture and river basins among its many roles with respect to the hydrologic cycle. Research aimed at improved understanding and modeling of surface water processes includes attention to rainfall at a variety of space-time scales. Given the atmospheric environment in which rai...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2006-06, Vol.42 (6), p.n/a
Main Author: Waymire, E.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rainfall charges soil moisture and river basins among its many roles with respect to the hydrologic cycle. Research aimed at improved understanding and modeling of surface water processes includes attention to rainfall at a variety of space-time scales. Given the atmospheric environment in which rain events are observed, some similarities between certain rainfall data structures and fluid turbulence can be expected. So the space-time intermittency and large fluctuations observed in both rain rates and energy dissipation rates have provided an interest among hydrologists in developing physical theories, experiments, and mathematical models. In response to a request for insights into multiplicative cascade models, the main goal of this article is to single out a special mathematical transformation, namely, “size biasing” (or “tilting”), which has proven to be very powerful in the mathematical analysis of multiplicative cascades and which has also been successfully exploited within the context of turbulence from a physical perspective.
ISSN:0043-1397
1944-7973
DOI:10.1029/2005WR004492