Loading…

Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains

The proximate and the fatty acid analysis of the warm freshwater fish, Tilapia zillii larvae, the freshwater rotifer Brachionus calyciflorus and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris each constituting a different food chain with B. calyciflorus and T. zill...

Full description

Saved in:
Bibliographic Details
Published in:Aquaculture 1999-04, Vol.174 (3), p.299-311
Main Authors: Işik, Oya, Sarihan, Ercan, Kuşvuran, Erdal, Gül, Ömer, Erbatur, Oktay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153
cites cdi_FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153
container_end_page 311
container_issue 3
container_start_page 299
container_title Aquaculture
container_volume 174
creator Işik, Oya
Sarihan, Ercan
Kuşvuran, Erdal
Gül, Ömer
Erbatur, Oktay
description The proximate and the fatty acid analysis of the warm freshwater fish, Tilapia zillii larvae, the freshwater rotifer Brachionus calyciflorus and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris each constituting a different food chain with B. calyciflorus and T. zillii larvae have been carried out. C. vulgaris had significantly higher lipid content than the other two microalgae and this was also reflected in the lipid content of B. calyciflorus fed each of the microalgae separately. Five fatty acids dominated in all the microalgae, namely 18:3 n−3, 18:2 n−6, 18:0, 18:1 and 16:0 though there were significant differences both in quantitative distribution of these acids and the total fatty acid content. The content of 18:3 n−3, 18:2 n−6 and 16:0 and the total fatty acid content of C. vulgaris were considerably higher than the corresponding values in the other two microalgae. But interestingly, these strong differences were not reflected in B. calyciflorus samples fed these microalgae separately though the one fed C. vulgaris had slightly higher total fatty acid content than the other two rotifer samples. One can consider that the freshwater rotifer B. calyciflorus is capable of creating its own characteristic fatty acid content up to a sufficient level even when cultured with a fatty acid deficient algae probably by consuming excessive amounts of this algae compared to other algae of relatively high fatty acid content. The proximate and fatty acid analysis results of the three T. zillii larvae fed the three B. calyciflorus samples obtained by culturing with three different microalgae were very similar. This was an expected result because the three B. calyciflorus samples did not differ much from each other. The low 18:2 n−6 (1.66–3.53 mg g −1 DM) and 18:3 n−3 (1.14–1.22 mg g −1 DM) content and the relatively high 22:6 n−3 (10.72–14.38 mg g −1 DM) content of the T. zillii larvae samples indicated that they were capable of elongating and desaturating both linoleic and linolenic acids of the B. calyciflorus samples.
doi_str_mv 10.1016/S0044-8486(99)00013-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17196631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0044848699000137</els_id><sourcerecordid>17196631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153</originalsourceid><addsrcrecordid>eNqFkkuLFDEQgBtRcFz9CUIQERe2Nen0KyfRYX3Aioddz6Emndi1dCdj0j0y_nixpmfQxYunHOqrL_XKsqeCvxJc1K-vOS_LvC3b-qVS55xzIfPmXrYSbSPzqi6K-9nqD_Iwe5TSLUF1XYlV9msdxi1ETMGz4NjUW-ZgmvYMDHbMUDAknPBONNrU_4DJRuYw9WyAuAPLbnCALQL7icOAeLGgMUzoiHsXwfSkmBMzMOwNuiHEOV0w8N0CjmhigOEbea6N9bazaSQYNrPvwBP4OfgQYdtjh_NIuMeJ3kP6uieXHQZgu5kE1AhDv0gXX36qIb9bqwuBWusBfXqcPXAwJPvk9J5lX99f3qw_5ldfPnxav73KjVTllNfKunIjpZU150WlbOlEYbiSjbFdU29kZTbtxgkpC66asi061ShTtA2AUUJU8ix7cfRuY_g-2zTpEZM51O1tmJMWjVB1LQWBz_4Bb8McPdWmC14SVS5QdYRobClF6_Q24ghxrwXXh5PQy0now761Uno5Cd1Q3vOTHBJtwkXwBtPf5JaLqmoJe3PELE1khzbqZNB6ahWjNZPuAv7no9_3JdC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204719431</pqid></control><display><type>article</type><title>Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Işik, Oya ; Sarihan, Ercan ; Kuşvuran, Erdal ; Gül, Ömer ; Erbatur, Oktay</creator><creatorcontrib>Işik, Oya ; Sarihan, Ercan ; Kuşvuran, Erdal ; Gül, Ömer ; Erbatur, Oktay</creatorcontrib><description>The proximate and the fatty acid analysis of the warm freshwater fish, Tilapia zillii larvae, the freshwater rotifer Brachionus calyciflorus and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris each constituting a different food chain with B. calyciflorus and T. zillii larvae have been carried out. C. vulgaris had significantly higher lipid content than the other two microalgae and this was also reflected in the lipid content of B. calyciflorus fed each of the microalgae separately. Five fatty acids dominated in all the microalgae, namely 18:3 n−3, 18:2 n−6, 18:0, 18:1 and 16:0 though there were significant differences both in quantitative distribution of these acids and the total fatty acid content. The content of 18:3 n−3, 18:2 n−6 and 16:0 and the total fatty acid content of C. vulgaris were considerably higher than the corresponding values in the other two microalgae. But interestingly, these strong differences were not reflected in B. calyciflorus samples fed these microalgae separately though the one fed C. vulgaris had slightly higher total fatty acid content than the other two rotifer samples. One can consider that the freshwater rotifer B. calyciflorus is capable of creating its own characteristic fatty acid content up to a sufficient level even when cultured with a fatty acid deficient algae probably by consuming excessive amounts of this algae compared to other algae of relatively high fatty acid content. The proximate and fatty acid analysis results of the three T. zillii larvae fed the three B. calyciflorus samples obtained by culturing with three different microalgae were very similar. This was an expected result because the three B. calyciflorus samples did not differ much from each other. The low 18:2 n−6 (1.66–3.53 mg g −1 DM) and 18:3 n−3 (1.14–1.22 mg g −1 DM) content and the relatively high 22:6 n−3 (10.72–14.38 mg g −1 DM) content of the T. zillii larvae samples indicated that they were capable of elongating and desaturating both linoleic and linolenic acids of the B. calyciflorus samples.</description><identifier>ISSN: 0044-8486</identifier><identifier>EISSN: 1873-5622</identifier><identifier>DOI: 10.1016/S0044-8486(99)00013-7</identifier><identifier>CODEN: AQCLAL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algae ; Animal productions ; Aquaculture ; B. Calyciflorus ; Biological and medical sciences ; Brachionus calyciflorus ; C. vulgaris ; Chlorella vulgaris ; Fatty acid ; Fatty acids ; Fish ; Fundamental and applied biological sciences. Psychology ; General aspects ; M. minitum ; Marine biology ; Monoraphidium minitum ; S. abundans ; Scenedesmus abundans ; Tilapia zillii</subject><ispartof>Aquaculture, 1999-04, Vol.174 (3), p.299-311</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Apr 20, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153</citedby><cites>FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1801558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Işik, Oya</creatorcontrib><creatorcontrib>Sarihan, Ercan</creatorcontrib><creatorcontrib>Kuşvuran, Erdal</creatorcontrib><creatorcontrib>Gül, Ömer</creatorcontrib><creatorcontrib>Erbatur, Oktay</creatorcontrib><title>Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains</title><title>Aquaculture</title><description>The proximate and the fatty acid analysis of the warm freshwater fish, Tilapia zillii larvae, the freshwater rotifer Brachionus calyciflorus and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris each constituting a different food chain with B. calyciflorus and T. zillii larvae have been carried out. C. vulgaris had significantly higher lipid content than the other two microalgae and this was also reflected in the lipid content of B. calyciflorus fed each of the microalgae separately. Five fatty acids dominated in all the microalgae, namely 18:3 n−3, 18:2 n−6, 18:0, 18:1 and 16:0 though there were significant differences both in quantitative distribution of these acids and the total fatty acid content. The content of 18:3 n−3, 18:2 n−6 and 16:0 and the total fatty acid content of C. vulgaris were considerably higher than the corresponding values in the other two microalgae. But interestingly, these strong differences were not reflected in B. calyciflorus samples fed these microalgae separately though the one fed C. vulgaris had slightly higher total fatty acid content than the other two rotifer samples. One can consider that the freshwater rotifer B. calyciflorus is capable of creating its own characteristic fatty acid content up to a sufficient level even when cultured with a fatty acid deficient algae probably by consuming excessive amounts of this algae compared to other algae of relatively high fatty acid content. The proximate and fatty acid analysis results of the three T. zillii larvae fed the three B. calyciflorus samples obtained by culturing with three different microalgae were very similar. This was an expected result because the three B. calyciflorus samples did not differ much from each other. The low 18:2 n−6 (1.66–3.53 mg g −1 DM) and 18:3 n−3 (1.14–1.22 mg g −1 DM) content and the relatively high 22:6 n−3 (10.72–14.38 mg g −1 DM) content of the T. zillii larvae samples indicated that they were capable of elongating and desaturating both linoleic and linolenic acids of the B. calyciflorus samples.</description><subject>Algae</subject><subject>Animal productions</subject><subject>Aquaculture</subject><subject>B. Calyciflorus</subject><subject>Biological and medical sciences</subject><subject>Brachionus calyciflorus</subject><subject>C. vulgaris</subject><subject>Chlorella vulgaris</subject><subject>Fatty acid</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>M. minitum</subject><subject>Marine biology</subject><subject>Monoraphidium minitum</subject><subject>S. abundans</subject><subject>Scenedesmus abundans</subject><subject>Tilapia zillii</subject><issn>0044-8486</issn><issn>1873-5622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkkuLFDEQgBtRcFz9CUIQERe2Nen0KyfRYX3Aioddz6Emndi1dCdj0j0y_nixpmfQxYunHOqrL_XKsqeCvxJc1K-vOS_LvC3b-qVS55xzIfPmXrYSbSPzqi6K-9nqD_Iwe5TSLUF1XYlV9msdxi1ETMGz4NjUW-ZgmvYMDHbMUDAknPBONNrU_4DJRuYw9WyAuAPLbnCALQL7icOAeLGgMUzoiHsXwfSkmBMzMOwNuiHEOV0w8N0CjmhigOEbea6N9bazaSQYNrPvwBP4OfgQYdtjh_NIuMeJ3kP6uieXHQZgu5kE1AhDv0gXX36qIb9bqwuBWusBfXqcPXAwJPvk9J5lX99f3qw_5ldfPnxav73KjVTllNfKunIjpZU150WlbOlEYbiSjbFdU29kZTbtxgkpC66asi061ShTtA2AUUJU8ix7cfRuY_g-2zTpEZM51O1tmJMWjVB1LQWBz_4Bb8McPdWmC14SVS5QdYRobClF6_Q24ghxrwXXh5PQy0now761Uno5Cd1Q3vOTHBJtwkXwBtPf5JaLqmoJe3PELE1khzbqZNB6ahWjNZPuAv7no9_3JdC9</recordid><startdate>19990420</startdate><enddate>19990420</enddate><creator>Işik, Oya</creator><creator>Sarihan, Ercan</creator><creator>Kuşvuran, Erdal</creator><creator>Gül, Ömer</creator><creator>Erbatur, Oktay</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>19990420</creationdate><title>Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains</title><author>Işik, Oya ; Sarihan, Ercan ; Kuşvuran, Erdal ; Gül, Ömer ; Erbatur, Oktay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algae</topic><topic>Animal productions</topic><topic>Aquaculture</topic><topic>B. Calyciflorus</topic><topic>Biological and medical sciences</topic><topic>Brachionus calyciflorus</topic><topic>C. vulgaris</topic><topic>Chlorella vulgaris</topic><topic>Fatty acid</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>M. minitum</topic><topic>Marine biology</topic><topic>Monoraphidium minitum</topic><topic>S. abundans</topic><topic>Scenedesmus abundans</topic><topic>Tilapia zillii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Işik, Oya</creatorcontrib><creatorcontrib>Sarihan, Ercan</creatorcontrib><creatorcontrib>Kuşvuran, Erdal</creatorcontrib><creatorcontrib>Gül, Ömer</creatorcontrib><creatorcontrib>Erbatur, Oktay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Aquaculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Işik, Oya</au><au>Sarihan, Ercan</au><au>Kuşvuran, Erdal</au><au>Gül, Ömer</au><au>Erbatur, Oktay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains</atitle><jtitle>Aquaculture</jtitle><date>1999-04-20</date><risdate>1999</risdate><volume>174</volume><issue>3</issue><spage>299</spage><epage>311</epage><pages>299-311</pages><issn>0044-8486</issn><eissn>1873-5622</eissn><coden>AQCLAL</coden><abstract>The proximate and the fatty acid analysis of the warm freshwater fish, Tilapia zillii larvae, the freshwater rotifer Brachionus calyciflorus and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris each constituting a different food chain with B. calyciflorus and T. zillii larvae have been carried out. C. vulgaris had significantly higher lipid content than the other two microalgae and this was also reflected in the lipid content of B. calyciflorus fed each of the microalgae separately. Five fatty acids dominated in all the microalgae, namely 18:3 n−3, 18:2 n−6, 18:0, 18:1 and 16:0 though there were significant differences both in quantitative distribution of these acids and the total fatty acid content. The content of 18:3 n−3, 18:2 n−6 and 16:0 and the total fatty acid content of C. vulgaris were considerably higher than the corresponding values in the other two microalgae. But interestingly, these strong differences were not reflected in B. calyciflorus samples fed these microalgae separately though the one fed C. vulgaris had slightly higher total fatty acid content than the other two rotifer samples. One can consider that the freshwater rotifer B. calyciflorus is capable of creating its own characteristic fatty acid content up to a sufficient level even when cultured with a fatty acid deficient algae probably by consuming excessive amounts of this algae compared to other algae of relatively high fatty acid content. The proximate and fatty acid analysis results of the three T. zillii larvae fed the three B. calyciflorus samples obtained by culturing with three different microalgae were very similar. This was an expected result because the three B. calyciflorus samples did not differ much from each other. The low 18:2 n−6 (1.66–3.53 mg g −1 DM) and 18:3 n−3 (1.14–1.22 mg g −1 DM) content and the relatively high 22:6 n−3 (10.72–14.38 mg g −1 DM) content of the T. zillii larvae samples indicated that they were capable of elongating and desaturating both linoleic and linolenic acids of the B. calyciflorus samples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0044-8486(99)00013-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-8486
ispartof Aquaculture, 1999-04, Vol.174 (3), p.299-311
issn 0044-8486
1873-5622
language eng
recordid cdi_proquest_miscellaneous_17196631
source ScienceDirect Freedom Collection 2022-2024
subjects Algae
Animal productions
Aquaculture
B. Calyciflorus
Biological and medical sciences
Brachionus calyciflorus
C. vulgaris
Chlorella vulgaris
Fatty acid
Fatty acids
Fish
Fundamental and applied biological sciences. Psychology
General aspects
M. minitum
Marine biology
Monoraphidium minitum
S. abundans
Scenedesmus abundans
Tilapia zillii
title Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20fatty%20acid%20composition%20of%20the%20freshwater%20fish%20larvae%20Tilapia%20zillii,%20the%20rotifer%20Brachionus%20calyciflorus,%20and%20the%20microalgae%20Scenedesmus%20abundans,%20Monoraphidium%20minitum%20and%20Chlorella%20vulgaris%20in%20the%20algae-rotifer-fish%20larvae%20food%20chains&rft.jtitle=Aquaculture&rft.au=I%C5%9Fik,%20Oya&rft.date=1999-04-20&rft.volume=174&rft.issue=3&rft.spage=299&rft.epage=311&rft.pages=299-311&rft.issn=0044-8486&rft.eissn=1873-5622&rft.coden=AQCLAL&rft_id=info:doi/10.1016/S0044-8486(99)00013-7&rft_dat=%3Cproquest_cross%3E17196631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-69ef4b33e3600259e4f12c0937ced76b35cb8bf1332097482d979c287aac91153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204719431&rft_id=info:pmid/&rfr_iscdi=true